Từ đề có thể suy ra thông tin $a+b< 0$ chứ không thể so sánh $a,b$
Cho $(a=-5)> (b=-6)$ hay $(a=-1)< (b=0)$ đều thỏa đề.
Từ đề có thể suy ra thông tin $a+b< 0$ chứ không thể so sánh $a,b$
Cho $(a=-5)> (b=-6)$ hay $(a=-1)< (b=0)$ đều thỏa đề.
Rút gọn các biểu thức sau :
a) \(A=\left(0,04\right)^{-1,5}-\left(0,125\right)^{\frac{-2}{3}}\)
b) \(B=\left(6^{\frac{-2}{7}}\right)^{-7}-\left[\left(\left(0,2\right)^{0,75}\right)^{-4}\right]\)
c) \(C=\frac{a^{\sqrt{5}+3}.a^{\sqrt{5}\left(\sqrt{5}-1\right)}}{\left(a^{2\sqrt{2}-1}\right)^{2\sqrt{2}+1}}\)
d) \(D=\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)^2:\left(b-2b\sqrt{\frac{b}{a}}+\frac{b^2}{a}\right)\left(a,b>0\right)\)
Hãy so sánh mỗi số sau với 1 :
a) \(2^{-2}\)
b) \(\left(0,013\right)^{-1}\)
c) \(\left(\dfrac{2}{7}\right)^5\)
d) \(\left(\dfrac{1}{2}\right)^{\sqrt{3}}\)
e) \(\left(\dfrac{\pi}{4}\right)^{\sqrt{5}-2}\)
g) \(\left(\dfrac{1}{3}\right)^{\sqrt{8}-3}\)
Hãy so sánh các cặp số sau :
a) \(\sqrt{17}\) và \(\sqrt[3]{28}\)
b) \(\sqrt[4]{13}\) và \(\sqrt[5]{23}\)
c) \(\left(\dfrac{1}{3}\right)^{\sqrt{3}}\) và \(\left(\dfrac{1}{3}\right)^{\sqrt{2}}\)
d) \(4^{\sqrt{5}}\) và \(4^{\sqrt{7}}\)
Cho a và b là các số dương. Đơn giản các biểu thức sau :
a) \(\dfrac{a^{\dfrac{4}{3}}\left(a^{-\dfrac{1}{3}}+a^{\dfrac{2}{3}}\right)}{a^{\dfrac{1}{4}}\left(a^{\dfrac{3}{4}}+a^{-\dfrac{1}{4}}\right)}\)
b) \(\dfrac{a^{\dfrac{1}{3}}\sqrt{b}+b^{\dfrac{1}{3}}\sqrt{a}}{\sqrt[6]{a}+\sqrt[6]{b}}\)
c) \(\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(a^{\dfrac{2}{3}}+b^{\dfrac{2}{3}}-\sqrt[3]{ab}\right)\)
d) \(\left(a^{\dfrac{1}{3}}+b^{\dfrac{1}{3}}\right):\left(2+\sqrt[3]{\dfrac{a}{b}}+\sqrt[3]{\dfrac{b}{a}}\right)\)
Đơn giản biểu thức sau :
\(M=\frac{\left(a^{\frac{1}{3}}+b^{\frac{1}{3}}\right)^2}{\sqrt[3]{ab}}:\left(2+\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}\right)\)
Đơn giản biểu thức sau :
\(F=\left(1-2\sqrt{\frac{a}{b}}+\frac{a}{b}\right):\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)^2\)
Đơn giản các biểu thức sau :
\(E=\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)^2:\left(b-2b\sqrt{\frac{b}{a}}+\frac{b^2}{a}\right)\)
Đơn giản biểu thức sau :
\(T=\left(\sqrt[7]{\frac{a}{b}\sqrt[5]{\frac{b}{a}}}\right)^{\frac{35}{4}}\)
Rút gọn biểu thức
\(\frac{1}{a^2}\sqrt[3]{a^6+3a^4b^2+3a^2b^4+b^6}-\left[\frac{a^2-\left(a^{\frac{2}{3}}-b^{\frac{2}{3}}\right)^3+2b^2}{a^2+\left(a^{\frac{2}{3}}-b^{\frac{2}{3}}\right)^3+2b^2}\right]\)