Lời giải:
\(\sqrt{15}+\sqrt{17}-2\sqrt{16}=(\sqrt{15}-\sqrt{16})+(\sqrt{17}-\sqrt{16})\)
\(=\frac{-1}{\sqrt{15}+\sqrt{16}}+\frac{1}{\sqrt{17}+\sqrt{16}}=\frac{1}{\sqrt{17}+\sqrt{16}}-\frac{1}{\sqrt{15}+\sqrt{16}}\)
Dễ thấy \(\sqrt{17}+\sqrt{16}>\sqrt{15}+\sqrt{16}>0\)
\(\Rightarrow \frac{1}{\sqrt{17}+\sqrt{16}}< \frac{1}{\sqrt{15}+\sqrt{16}}\)
\(\Rightarrow\frac{1}{\sqrt{17}+\sqrt{16}}-\frac{1}{\sqrt{15}+\sqrt{16}}<0\)
\(\Rightarrow \sqrt{15}+\sqrt{17}< 2\sqrt{16}\)