Ta có: \(M=\frac{101^{102}+1}{101^{103}+1}\Rightarrow101M=\frac{101^{103}+101}{101^{103}+1}=1+\frac{100}{101^{103}+1}\)
\(N=\frac{101^{103}+1}{101^{104}+1}\Rightarrow101N=\frac{101^{104}+101}{101^{104}+1}=1+\frac{100}{101^{104}+1}\)
Vì \(1+\frac{100}{101^{103}+1}>1+\frac{100}{101^{104}+1}\) nên \(101M>101N\)
\(\Rightarrow M>N\)
Vậy M > N