Ta có: \(A=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2^2-\sqrt{\left(2+\sqrt{3}\right)^2}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{4-\left|2+\sqrt{3}\right|}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{4-\left(2+\sqrt{3}\right)}\)(Vì \(2>\sqrt{3}>0\))
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{4-2-\sqrt{3}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2-\sqrt{3}}\)
\(=\sqrt{2^2-\left(\sqrt{3}\right)^2}\)
\(=\sqrt{4-3}\)(Vì \(3>0\))
\(=1\)
Ta có: \(B=\left(\frac{1}{\sqrt{\sqrt{5}+2}}+\sqrt{\sqrt{5}+2}\right)\cdot\frac{1}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)
\(=\left(\frac{1}{\sqrt{\sqrt{5}+2}}+\frac{\sqrt{5}+2}{\sqrt{\sqrt{5}+2}}\right)\cdot\frac{\sqrt{\sqrt{5}-1}}{2}-\sqrt{2-2\cdot\sqrt{2}\cdot1+1}\)
\(=\frac{3+\sqrt{5}}{\sqrt{\sqrt{5}+2}}\cdot\frac{\sqrt{\sqrt{5}-1}}{2}-\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\frac{\left(3+\sqrt{5}\right)}{2}\cdot\sqrt{\frac{\left(\sqrt{5}-1\right)\left(\sqrt{5}-2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}}-\left|\sqrt{2}-1\right|\)
\(=\frac{3+\sqrt{5}}{2}\cdot\sqrt{\frac{7-3\sqrt{5}}{5-4}}-\left(\sqrt{2}-1\right)\)(Vì \(\sqrt{2}>1\))
\(=\frac{6+2\sqrt{5}}{4}\cdot\sqrt{7-3\sqrt{5}}-\sqrt{2}+1\)
\(=\frac{\left(\sqrt{5}+1\right)^2\cdot\sqrt{14-6\sqrt{5}}}{4\sqrt{2}}-\sqrt{2}+1\)
\(=\frac{\left(\sqrt{5}+1\right)^2\cdot\left(3-\sqrt{5}\right)}{4\sqrt{2}}-\frac{4\sqrt{2}\cdot\left(\sqrt{2}-1\right)}{4\sqrt{2}}\)
\(=\frac{\left(\sqrt{5}+1\right)^2\cdot\left(6-2\sqrt{5}\right)}{8\sqrt{2}}-\frac{8\sqrt{2}\cdot\left(\sqrt{2}-1\right)}{8\sqrt{2}}\)
\(=\frac{16-16+8\sqrt{2}}{8\sqrt{2}}\)
=1
Vậy: A=B