`@` `\text {Answer}`
`\downarrow`
Ta có:
\(333^{444}=\left(333^4\right)^{111}=\left(3^4\cdot111^4\right)^{111}=\left(81\cdot111^4\right)^{111}=81^{111}\cdot111^{444}\) `(1)`
\(444^{333}=\left(444^3\right)^{111}=\left(4^3\cdot111^3\right)^{111}=\left(64\cdot111^3\right)=64^{111}\cdot111^{333}\) `(2)`
Vì \(81>64\), \(444>333\)
`=>`\(81^{111}>64^{111},\) \(111^{444}>111^{333}\) `(3)`
Từ `(1), (2)` và `(3)`
`=>`\(333^{444}>444^{333}\)