so sánh \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{100}}\)với 10
so sánh \(\dfrac{\sqrt{21}-\sqrt{13}}{35-2\sqrt{273}}+\dfrac{\sqrt{10}-\sqrt{5}}{16-10\sqrt{2}}\)với 1
So sánh A=\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{120}+\sqrt{121}}\)
với B=\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{35}}\)
So sánh P = \(\dfrac{1+\sqrt{x}}{2\sqrt{x}}\) và \(\dfrac{1}{2}\)
Tính \(S=\dfrac{2016}{\sqrt{1+\dfrac{1}{2002^2}+\dfrac{1}{2001^2}}+\sqrt{1+\dfrac{1}{2001^2}+\dfrac{1}{2002^2}}+...+\sqrt{1+\dfrac{1}{2016^2}+\dfrac{1}{2017^2}}}\)
1/Tính
A=\(\dfrac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}\)
B=\(\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2}+\sqrt{3}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2}-\sqrt{3}}\)
C=\(\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\)
D=\(\dfrac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{13}}}\)
2/So sánh
\(\sqrt{2017^2-1}-\sqrt{2016^2-1}\) và \(\dfrac{2.1016}{\sqrt{2017^2-1}+\sqrt{2016^2-1}}\)
P=\(\dfrac{1}{\sqrt{1.1998}}+\dfrac{1}{\sqrt{2.1997}}+...+\dfrac{1}{\sqrt{k\left(1998-k+1\right)}}+...+\dfrac{1}{\sqrt{1998.1}}\)
so sánh P với 2.\(\dfrac{1998}{1999}\)
Tìm số tự nhiên n , biết rằng : \(\dfrac{1}{\sqrt{1^3+2^3}}+\dfrac{1}{\sqrt{1^3+2^3+3^3}}+...+\dfrac{1}{\sqrt{1^3+2^3+3^3+...+n^3}}=\dfrac{2015}{2017}\)
Rút gọn:
1) \(\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}-2\sqrt{3}\)
\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
2) \(\sqrt{3-2\sqrt{2}}+\dfrac{1}{\sqrt{2}-1}\)
\(M=\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{\sqrt{a}}{\sqrt{a}+2}\right).\dfrac{a-4}{\sqrt{4a}}\)
\(N=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}+\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{x+\sqrt{x}-6}\right)\)
\(Q=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}+\dfrac{\sqrt{x}+3}{2-\sqrt{x}}\right)\)
Làm chi tiết giúp mình với vì mình yếu phần này lắm