a) Ta có: 4 = \(\sqrt{16}\)
Vì 16 > 10 nên \(\sqrt{16}\) > \(\sqrt{10}\). \(\Rightarrow\) 4 > \(\sqrt{10}\)
Vậy, 4 > \(\sqrt{10}\)
a.) \(4=\sqrt{16}\) mà \(10< 16\Rightarrow\sqrt{10}< \sqrt{16}\Rightarrow\sqrt{10}< 4\)
b) \(6=\sqrt{36}\) mà \(40>36\Rightarrow\sqrt{40}>\sqrt{36}\Rightarrow\sqrt{40}>6\)
c.) Ta có: 9 = 4 + 5 = \(\sqrt{16}+\sqrt{25}\)
\(\sqrt{15}< \sqrt{16};\sqrt{24}< \sqrt{25}\)
\(\Rightarrow\sqrt{15}+\sqrt{24}< \sqrt{16}+\sqrt{25}\)
\(\Rightarrow\sqrt{15}+\sqrt{24}< 4+5\)
\(\Rightarrow\sqrt{15}+\sqrt{24}< 9\)
d.) \(3\sqrt{2}=\sqrt{18}\)
\(2\sqrt{5}=\sqrt{20}\)
mà 18 < 20
\(\Rightarrow\sqrt{18}< \sqrt{20}\)
\(\Rightarrow3\sqrt{2}< 2\sqrt{5}\)
b) Ta có:
6 = \(\sqrt{36}\)
Vì 40 > 36 nên \(\sqrt{40}\) > \(\sqrt{36}\). \(\Rightarrow\) \(\sqrt{40}\) > 6
Vậy, \(\sqrt{40}\) > 6
c) Vì 15 < 16 nên \(\sqrt{15}\) < \(\sqrt{16}\) = 4
Vì 24 < 25 nên \(\sqrt{24}\) < \(\sqrt{25}\) = 5
\(\Rightarrow\) \(\sqrt{15}\) + \(\sqrt{24}\) < 5 + 4 = 9
Vậy, \(\sqrt{15}\) + \(\sqrt{24}\) < 9