\(A=\dfrac{113^{20}+113-112}{113^{19}+1}=113-\dfrac{112}{113^{19}+1}\)
\(B=\dfrac{113^{19}+113-112}{113^{18}+1}=113-\dfrac{112}{113^{18}+1}\)
mà \(113^{19}+1>113^{18}+1\)
nên \(A>B\)
\(A=\dfrac{113^{20}+113-112}{113^{19}+1}=113-\dfrac{112}{113^{19}+1}\)
\(B=\dfrac{113^{19}+113-112}{113^{18}+1}=113-\dfrac{112}{113^{18}+1}\)
mà \(113^{19}+1>113^{18}+1\)
nên \(A>B\)
Tính
\(A=\dfrac{1003+1007+\dfrac{2010}{113}+\dfrac{2010}{117}-\dfrac{1003}{119}-\dfrac{1007}{119}}{1003+1008+\dfrac{2011}{113}+\dfrac{2011}{117}-\dfrac{1003}{119}-\dfrac{1008}{119}}\)
Cho A=\(\dfrac{50}{111}\)+\(\dfrac{50}{112}\)+\(\dfrac{50}{113}+\dfrac{50}{114}\)
CMR : 1<A<2
Chứng minh:B=\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}+\dfrac{1}{41}+\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{113}< \dfrac{1}{2}\)
Giúp mik vs cb ! Tối nay mik đi học rồi !
\(Tìm\) \(x\)∈\(Z\)\(,\) \(biết\)\(:\)
\(a\)) \(\left(x-20\right)+\left(x-19\right)+\left(x-18\right)+...+99+100=100\)
\(b\)) \(213-x.\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}\right):\left(1-\dfrac{1}{2^{2020}}\right)=13\)
bài 1. tìm x thuộc N dư : a) 113 + 7 chia hết cho 7
b) 113 + x chia hết cho 13
bài 2. chứng tỏ : a) ab + ba chia hết cho 11
b) abc - cba chia hết cho 99
giúp nha
Câu 1: So sánh:
a) \(\dfrac{-15}{17}và\dfrac{-19}{21}\)
b)\(\dfrac{-13}{19}và\dfrac{19}{-23}\)
c) \(\dfrac{-24}{35}và\dfrac{-19}{30}\)
d) \(\dfrac{-1941}{1931}và\dfrac{-2011}{2001}\)
So sánh A và B :
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)
\(B=\dfrac{1}{2}\)
Chứng minh rằng: \(S=\dfrac{1}{19}+\dfrac{1}{19^2}+\dfrac{1}{19^3}+...+\dfrac{1}{19^{10}}< \dfrac{1}{18}\)
Tính
\(\dfrac{\dfrac{1}{9}+\dfrac{2}{18}+\dfrac{3}{17}+...+\dfrac{18}{2}+\dfrac{19}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}\)