Ta có `3A=1+1/3+....+1/3^99`
`=>3A-A=1-1/3^100`
`=>2A=1-1/3^100`
`=>A=1/2-1/(2.3^100)<1/2`
Hay `A<B`
Ta có `3A=1+1/3+....+1/3^99`
`=>3A-A=1-1/3^100`
`=>2A=1-1/3^100`
`=>A=1/2-1/(2.3^100)<1/2`
Hay `A<B`
SO SÁNH A VÀ B
A=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
B=\(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}\)
Giúp mk với
Câu 1:
Cho A = \(\dfrac{1}{\dfrac{99}{\dfrac{1}{2}+}}+\dfrac{2}{\dfrac{98}{\dfrac{1}{3}+}}+\dfrac{3}{\dfrac{97}{\dfrac{1}{4}+....}}+...+\dfrac{99}{\dfrac{1}{\dfrac{1}{100}}}\).
B =\(\dfrac{92}{\dfrac{1}{45}+}-\dfrac{1}{\dfrac{9}{\dfrac{1}{50}+}}-\dfrac{2}{\dfrac{10}{\dfrac{1}{55}+}}-\dfrac{3}{\dfrac{11}{\dfrac{1}{60}+....}}-...\dfrac{92}{\dfrac{100}{\dfrac{1}{500}}}\). Tính \(\dfrac{A}{B}\)
Bài 1: Tính tổng 100 số hạng đầu tiên của các dãy sau:
a)\(\dfrac{1}{2};\dfrac{1}{6};\dfrac{1}{12};\dfrac{1}{20};\dfrac{1}{30};...\)
b)\(\dfrac{1}{6};\dfrac{1}{66};\dfrac{1}{176};\dfrac{1}{336};...\)
Bài 2: Tính:
a)A=\(\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{97}+\dfrac{1}{99}}{\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{97.3}+\dfrac{1}{99.1}}\)
b)B=\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}{\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}}\)
a/ Rút gọn 2 biểu thức sau: \(E=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}\)và \(F=\dfrac{94-\dfrac{1}{7}-\dfrac{2}{8}-\dfrac{3}{9}-...-\dfrac{94}{100}}{\dfrac{1}{35}+\dfrac{1}{40}+\dfrac{1}{45}+...+\dfrac{1}{500}}\)
b/ Tính E - 2F
Tính : \(A=-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}-\dfrac{1}{3^{101}}\)
1, so sánh A;B biết: A=\(\left(\dfrac{\left(3\cdot\dfrac{2}{15}+\dfrac{1}{5}\right):2\cdot\dfrac{1}{2}}{\left(5\cdot\dfrac{3}{7}-2\cdot\dfrac{1}{4}\right):\dfrac{443}{56}}\right);B=\dfrac{1,2:\left(1\cdot\dfrac{1}{5}.1\cdot\dfrac{1}{4}\right)}{0,32+\dfrac{2}{25}}\)
Cho A = \(\dfrac{1}{2014}\)+\(\dfrac{2}{2013}\)+\(\dfrac{3}{2012}\)+...+\(\dfrac{2013}{2}\)+2014
B = \(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+...+\(\dfrac{1}{2015}\)
Tính giá trị \(\dfrac{A}{B}\)
So sánh A =\(\dfrac{1}{1!}+\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\)với 2 ta được A...2
Tính nhanh:
a) A= 1 + \(\dfrac{1}{5}+\dfrac{1}{25}+\dfrac{1}{125}+\dfrac{1}{625}+...+\dfrac{1}{78125}\)
b) B= \(\dfrac{1}{3}+\dfrac{1}{12}+\dfrac{1}{48}+\dfrac{1}{192}+\dfrac{1}{768}+...+\dfrac{1}{36864}\)
c) M= \(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{9900}\)
d) P= \(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+3+4+...+2018}\)