à mình nói kết quả luôn mấy bạn giải giùm nha, A<2
A=\(\dfrac{1}{1!}+\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\)<1+\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
... <1+\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{99}-\dfrac{1}{100}\)
... <2-\(\dfrac{1}{100}\)<2
\(\Rightarrow\)\(\dfrac{1}{1!}+\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\)<2
\(\Rightarrow\)A<2