a: \(A=\dfrac{1}{\sqrt{3}+\sqrt{2}}\)
\(B=\dfrac{1}{\sqrt{6}+\sqrt{5}}\)
mà 3<6; 2<5
nên A>B
b: A=134,6327
B=134,6328
Do đó: A<B
a: \(A=\dfrac{1}{\sqrt{3}+\sqrt{2}}\)
\(B=\dfrac{1}{\sqrt{6}+\sqrt{5}}\)
mà 3<6; 2<5
nên A>B
b: A=134,6327
B=134,6328
Do đó: A<B
so sánh \(\sqrt{2015}-\sqrt{2014}\) và \(\sqrt{2016}-\sqrt{2015}\)
Cho: A=\(\sqrt{2017}+\sqrt{2018}+\sqrt{2019}\)
B=\(\sqrt{2015}+\sqrt{2016}+\sqrt{2023}\)
So sánh A và B. (Giải chi tiết)
a)cho a>b>0 chứng minh rằng : \(\dfrac{1}{a+b}\le\dfrac{1}{2\sqrt{ab}}\)
b) Chứng minh \(\dfrac{\sqrt{2}-\sqrt{1}}{3}+\dfrac{\sqrt{3}-\sqrt{2}}{5}+\dfrac{\sqrt{4}-\sqrt{3}}{7}+...+\dfrac{\sqrt{2011}-\sqrt{2010}}{4021}< \dfrac{1}{2}\)
giúp mk vs
a)cho a>b>0 chứng minh rằng :
So sánh:
a) \(\sqrt{25}+\sqrt{45}\) và 12
b) \(\sqrt{2013}+\sqrt{2015}\) và \(2\sqrt{2014}\)
c) \(\sqrt{2014}-\sqrt{2013}\) và \(\sqrt{2013}-\sqrt{2012}\)
Chỉ mình làm những dạng như này với. Thanks
1.cho biểu thức :
A=\(\left(\dfrac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-x\right)\)
a, Tìm x để A có nghĩa
b, Rút gọn A
c, Tìm x để A=7- \(4\sqrt{3}\)
B=\(\dfrac{6\sqrt{x}}{x-9}+\dfrac{2}{\sqrt{x}+3}+\dfrac{3}{3-\sqrt{x}}\left(x\ge0;x\ne9\right)\)
a, rút gọn B
b, Tính giá trị của B tại x=4
c, Tìm x nguyên để B nguyên
2.Tính
N= \(\sqrt{12+\sqrt{12+\sqrt{12+\sqrt{12+...}}}}\)
3. Thực hiện phép tính :
\(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{2017}+\sqrt{2018}}\)
4.Cho
P=\(\sqrt{2009}+\sqrt{2010}+\sqrt{2011}\) và Q=\(\sqrt{2007}+\sqrt{2009}+\sqrt{2017}\)
Không dùng máy tính, so sánh P và Q
So sánh ( Không sử dụng máy tính)
a) \(\sqrt{2}+\sqrt{3}\) và 3
b) 5 - và\(3\sqrt{2}-2\)
c) 3+ và \(2\sqrt{2}+6\)
Bài 1. Tính
a) A= \(\left[\dfrac{6+\sqrt{20}}{3+\sqrt{5}}+\dfrac{\sqrt{14}-\sqrt{2}}{\sqrt{7}-1}\right]\) : (2+ \(\sqrt{2}\))
b) B= \(\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}-\dfrac{11}{2\sqrt{3}+1}\)
Bài 2.
Cho A= \(\left(\dfrac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}-\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}\right).\dfrac{\sqrt{3}-1}{3\sqrt{2}-\sqrt{6}}\)
Chứng minh A là số nguyên.