\(A=2016.2018=\left(2017-1\right)\left(2017+1\right)\)
\(=2017^2-1< 2017^2\)
\(\Rightarrow A< B\)
Vậy A < B
Ta có:
\(A=2016.2018=\left(2017-1\right).\left(2017+1\right)\)
\(=2017^2-1^2=2017^2-1\)
Vì \(2017^2-1< 2017^2\) nên \(2016.2018< 2017^2\)
Do đó \(A< B\)
Chúc bạn học tốt!!!
\(A=2016\cdot2018=\left(2017-1\right)\left(2017+1\right)\)
\(=2017^2-1< 2017^2\)
\(\Rightarrow A< B\)
Vậy \(A< B\) hay \(2016\cdot2018< 2017^2\)