Giải:
\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\)
\(\Leftrightarrow\dfrac{1}{2}A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}...+\dfrac{1}{2^{11}}\)
\(\Leftrightarrow A-\dfrac{1}{2}A=\dfrac{2^{11}-1}{2^{11}}\)
\(\Leftrightarrow\dfrac{1}{2}A=\dfrac{2^{11}-1}{2^{11}}\)
\(\Leftrightarrow A=\dfrac{2\left(2^{11}-1\right)}{2^{11}}\)
\(\Leftrightarrow A=\dfrac{2^{12}-2}{2^{11}}\)
Vì \(2^{12}-2>1\)
\(\Leftrightarrow\dfrac{2^{12}-2}{2^{11}}>\dfrac{1}{2^{11}}\)
\(\Leftrightarrow A>B\)
Vậy ...