Ta có: 333^444= 111^444 x 3^444
444^333 = 111^333 x 4^333
Tách: 3^444 = (3^4)^111 =81^111 <=>4^333 = (4^3)^111 = 64^111
Mà: {111^444 > 111^333 (1)
{81^111 > 64^111 hay: (3^4)^111 > (4^3)^111 (2)
Từ (1) và (2) ta có:333^444 > 444^333
Ta có: 333^444= 111^444 x 3^444
444^333 = 111^333 x 4^333
Tách: 3^444 = (3^4)^111 =81^111 <=>4^333 = (4^3)^111 = 64^111
Mà: {111^444 > 111^333 (1)
{81^111 > 64^111 hay: (3^4)^111 > (4^3)^111 (2)
Từ (1) và (2) ta có:333^444 > 444^333
So sánh
a)333^444 và 444^333
b)5^200 và 2^500
so sánh \(333^{444}\)và\(444^{333}\)
So sánh:
a, A = 20 + 21 + 22 + 23 + .....+ 22010 và B = 22011 -1
b, A = 2009.2011 và B = 20102
c, A = 1030 và B = 2100
d, A = 333444 và B = 444333
e, A = 3450 và B = 5300
so sánh
a: A=2^0+2^1+2^2+2^3+....+2^2010 và B=2^2011-1
b: A=2009.2011 và B=2010^2
c: A= 10^30 và B = 2^100
d; A= 333^444 và B= 444^333
e: A= 3^150 và B= 5^300
Tính nhanh:
29 x 87- 29x 23+ 64x 71
So sánh
\(333^{444}\) và\(444^{333}\)
1)
a) chúng minh A= 2^1 + 2^2 + 2^3 + ... + 2^2010 chia hết cho 3 và 7
b) chúng minh B=3^1 + 3^2 + 3^3 + ...+3^2010 chia hết cho 4 và 13
c) chứng minh C=5^1 + 5^2 + 5^3 + ....+ 5^2010 chia hết cho 6 và 12
Lưu ý : Dấu ^ biểu diễn số đứng liền sau nó là số mũ . VD : 2^2 = 2 mũ 2
2)
a) A=2^0 + 2^1 + 2^2 + 2^3 + ... + 2^2010 và B = 2^2011-1
b) A=2009.2011 và B=2010^2
c) A=10^30 và B=2^100
d) A=333^444 và B= 444^333
So sánh các lũy thừa sau
a, 16^19 và 8^25
b, 3^500 và 7^300
c, 31^11 và 17^14
d, 222^333 và 333^222
Bài 1 Chứng minh A= 2^1+2^2+2^3+2^4+...2^2010 chia hết cho 3 và 7
b) Chứng minh B= 3^1+3^2+3^3+3^4+...+2^2010 chia hết cho 4 và 13
c) chứng minh C=5^1+5^2+5^3+5^4+...+5^2010 chia hết cho 6 và 31
d) chứng minh D= 7^1+7^2+7^3+7^4+...+7^2010 chia hết cho 8 và 57
Bài 2
a) A= 2^0+2^1+2^2+2^3+...+2^2010 và B=2^2011-1
b) A=2009*2011 và B=2010^2
c) A= 10^30 và B=2^100
d) A= 333^444 và B= 444^333
e) A=3^450 và B= 5^300
f) 5^36 và 11^24 ; 625^5 và 125^7 ; 3^2n và 2^3n (n thuộc N*) ; 5623 và 6*5^22
g) 7*2^13 và 2^16 ; 21^15 và 27^5*49^8 ; 199^20 và 2003^15 ; 3^39 và 11^21