Ta có: \(2^{333}=2^{3\cdot111}=\left(2^3\right)^{111}=8^{111}\)
\(3^{222}=3^{2\cdot111}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\) nên \(2^{333}< 3^{222}\)
\(2^{333}=2^{3.111}=\left(2^3\right)^{111}=8^{111}\)
\(3^{222}=3^{2.111}=\left(3^2\right)^{111}=9^{111}\)
\(\text{Do }9>8\Rightarrow9^{111}>8^{111}\text{ hay }3^{222}>2^{333}\)
\(\text{Vậy }3^{222}>2^{333}\)