\(2^{1000}=\left(2^5\right)^{200}=32^{200}\)
\(5^{400}=\left(5^2\right)^{200}=25^{200}\)
Vì \(32^{200}>25^{200}\)
\(\Rightarrow2^{1000}>5^{400}\)
Vậy...
Ta có :
\(2^{1000}=2^{10.100}\) \(=1024^{100}\)
\(55^{400}=5^{4.100}=625^{100}\)
\(1024^{100}>625^{100}\)
\(\Rightarrow2^{1000}>5^{400}\)