Ta có:
\(\dfrac{2014+2015}{2015.2014}\)
\(=\dfrac{2014}{2015.2014}+\dfrac{2015}{2015.2014}\)
\(=\dfrac{1}{2015}+\dfrac{1}{2014}\)
Ta thấy:
\(\dfrac{1}{2015}+\dfrac{1}{2014}< \dfrac{1}{2014}+\dfrac{1}{2014}=\dfrac{2}{2014}=\dfrac{1}{1007}\)
\(\Rightarrow\dfrac{1}{2015}+\dfrac{1}{2014}< \dfrac{1}{1007}\)
\(\Rightarrow\dfrac{2014+2015}{2015.2014}< \dfrac{1}{1007}\)