So Sánh : \(\dfrac{10^{11}-1}{10^{12}-1}\)và\(\dfrac{10^{10}+1}{10^{11}+1}\)
Cho M = \(1-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-\dfrac{1}{2^4}-....-\dfrac{1}{2^{10}}\) . So sánh M với \(\dfrac{1}{2^{11}}\)
tính A=1/2-1/3-2/3+1/4+2/4+3/4+...+1/10+2/10+...+9/10
So Sánh : S = \(\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}\) và \(\dfrac{1}{2}\)
\(\dfrac{(13\dfrac{1}{4}-2\dfrac{5}{27}-10\dfrac{5}{6}).230.\dfrac{1}{25}+46\dfrac{3}{4}}{(1\dfrac{3}{10}+\dfrac{10}{3}):(12\dfrac{1}{3}-14\dfrac{2}{7})}\)
so sánh a và b biết a=2016/2017+2017/2018+2018/2019+2019/2016 và b=1/8+1/9+1/10+...+1/63
tính:
O = \(\dfrac{\left(13\dfrac{1}{4}-2\dfrac{5}{27}-10\dfrac{5}{6}\right).230\dfrac{1}{25}+46\dfrac{3}{4}}{\left(1\dfrac{3}{10}+\dfrac{10}{3}\right):\left(12\dfrac{1}{3}-14\dfrac{2}{7}\right)}\)
Câu 1: Tìm tất cả số tự nhiên n sao cho: \(2^{n+3}.2^n\)
Câu 2: \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^n\)
Câu 3: So sánh hai biểu thức A và B trong từng trường hợp:
a) A=\(\frac{10^5+1}{10^{16}+1}\) và B=\(\frac{10^{16}+1}{10^{17}+1}\)
b) A=\(\frac{2^{2008}-3}{2^{2007}-1}\) và B=\(\frac{2^{2007}-3}{2^{2006}-1}\)
tinh b=(13/1/4-2/5/17-10/5/8+20/108)*(27/21+711/7)/(1/3/7+10/3):(12/1/3-14/2/7)