\(A=3^{n+3}+2^{n+3}+3^{n+1}+2^{n+2}\)
\(\Rightarrow A=\left(3^{n+3}+3^{n+1}\right)+\left(2^{n+3}+2^{n+2}\right)\)
\(\Rightarrow A=\left(3^n\times3^3+3^n\times3^1\right)+\left(2^n\times2^3+2^n\times2^2\right)\)
\(\Rightarrow A=\left(3^n\times27+3^n\times3\right)+\left(2^n\times8+2^n\times4\right)\)
\(\Rightarrow A=3^n\times\left(27+3\right)+2^n\times\left(8+4\right)\)
\(\Rightarrow A=3^n\times30+2^n\times12\)
Vì \(30⋮6\) nên \(3^n\times30⋮6\) \(\left(1\right)\)
Vì \(12⋮6\) nên \(2^n\times12⋮6\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow3^n\times30+2^n\times12⋮6\) \(\Rightarrow A⋮6\) \(\Rightarrow\) Số dư của \(A\) khi chia cho \(6\) là \(0\).
Vậy số dư của \(A\) khi chia cho \(6\) là \(0\) .