y’ = -x2 - 1 < 0, ∀x ∈ R
Hàm số luôn nghịch biến trên tập xác định. Do đó hàm số không có cực trị.
Chọn đáp án B
y’ = -x2 - 1 < 0, ∀x ∈ R
Hàm số luôn nghịch biến trên tập xác định. Do đó hàm số không có cực trị.
Chọn đáp án B
Cho hs y= x^4 - 2x^2 +2 . Diện tích S của tam giác có 3 đỉnh là 3 điểm cực trị của đồ thị hàm số đã cho có giá trị là?
Số điểm cực đại của hàm số \(y=x^4+100\) là:
0 1 2 3Tiếp tuyến tại điểm cực tiểu của đồ thị hàm số
\(y=\dfrac{1}{3}x^3-2x^2+3x-5\)
Song song với đường thẳng x=1 Song song với trục hoành Có hệ số góc dương Có hệ số góc bằng -1Cho hàm số: \(f(x)=\dfrac{1}{3}x^3−\dfrac{1}{2}x^2−4x+6\)
a) Giải phương trình \(f’(\sin x) = 0\)
b) Giải phương trình \(f’’(\cos x) = 0\)
c) Viết phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ là nghiệm của phương trình \(f’’(x) = 0\)
Số đường tiệm cận của đồ thị hàm số \(y=\dfrac{1-x}{1+x}\)là :
1 2 3 0Tìm tất cả các giá trị thực của tham số m để hs y = (m+1).x^4 - mx^2 +3 có 3 điểm cực trị.
Phát biểu các điều kiện để hàm số đồng biến, nghịch biến. Tìm các khoảng đơn điệu của các hàm số:
\(y= -x^3 + 2x^2 – x – 7\)
\(y=\dfrac{x-5}{1-x}\)
Tập hợp tất cả các giá trị thực của tham số m để hs y= \(\dfrac{-1}{3}x^3+x^2+mx-2019\) nghịch biến trên khoảng (0 ; dương vô cùng)
a) Khảo sát sự biến thiên và vẽ đồ thị \((C)\) của hàm số:
\(y = x^3 + 3x^2 + 1\)
b) Dựa vào đồ thị \((C)\), biện luận số nghiệm của phương trình sau theo m
\( x^3+3x^2+1=\dfrac{m}{2}\)
c) Viết phương trình đường thẳng đi qua điểm cực đại và điểm cực tiểu của đồ thị \((C)\)