cho khai triển \(\left(2018x^2+x+2018\right)^{2018}=a_0+a_1x+a_2x^2+...+a_{4036}x^{4036}\)
tính \(T=a_0-a_2+a_4-...-a_{4032}+a_{4036}\)
Chứng minh rằng :
1) \(2C_n^k+5C_n^{k+1}+4C_n^{k+2}+C_n^{k+3}=C_{n+2}^{k+2}+C_{n+3}^{k+3}\)
2) \(C_n^k+3C_n^{k-1}+3C_n^{k-2}=C_{n+3}^k\)
3) \(k\left(k-1\right)C_n^k=n\left(n-1\right)C_{n-2}^{k-2}\)
\(1.2C_{2018}^2-2.3C_{2018}^3+3.4C_{2018}^4-...+2017.2018C_{2018}^{2018}\) Rút gọn biểu thức trên
Cho tập \(X=\left\{6;7;8;9\right\}\). Gọi E là tập hợp tất cả các số tự nhiên có 2018 chữ số được lập từ các chữ số của X. Chọn ngẫu nhiên một số trong tập E. Tính xác suất để số được chọn chia hết cho 3.
Câu 1 : Rút gọn
\(G=\dfrac{6!}{\left(m-2\right)\left(m-3\right)}.\left[\dfrac{\left(m+1\right)!}{5!.\left(m-4\right)!.\left(m+1\right)}-\dfrac{m!}{12.3!.\left(m-4\right)!}\right]\)
Câu 2 : CMR
\(1+\dfrac{1}{1!}+\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{n!}< 3\forall n\in N\)
Rút gọn:
\(A=\dfrac{6!}{\left(m-2\right)\left(m-3\right)}.\left[\dfrac{1}{\left(m+1\right)\left(m-4\right)}.\dfrac{\left(m+1\right)!}{\left(m-5\right)!5!}-\dfrac{m\left(m-1\right)!}{12.\left(m-4\right)!3!}\right]\) với \(m\ge5\)
tìm hệ số x7trong KT:
\(\left(2-3x\right)^{2n}\) biết : \(C^1_{2n+1}+C^3_{2n+1}+..+C^{2n+1}_{2n+1}\)=1024
12, tìm hệ số x26trong khai triển : \(\left(1+x^7\right)^n\), x khác 0 biết :
\(C^1_{2n+1}+C^2_{2n+1}+...+C^n_{2n+1}=2^{20}-1\)
Viết khai triển Niutơn;
\(a,\left(\dfrac{1}{x}-\dfrac{x^2}{3}\right)^5\)
\(b,\left(\sqrt{2}x+1\right)^5\)