3/2pi<x<2pi
=>sin x<0; cosx>0
sin x+cosx=-1/2
=>(sinx+cosx)^2=1/4
=>1+2*sinx*cosx=1/4
=>2*sin x*cosx=-3/4
=>sinx*cosx=-3/8
mà sin x+cosx=-1/2
nên \(sinx=\dfrac{-1-\sqrt{7}}{4};cosx=\dfrac{-1+\sqrt{7}}{4}\)
3/2pi<x<2pi
=>sin x<0; cosx>0
sin x+cosx=-1/2
=>(sinx+cosx)^2=1/4
=>1+2*sinx*cosx=1/4
=>2*sin x*cosx=-3/4
=>sinx*cosx=-3/8
mà sin x+cosx=-1/2
nên \(sinx=\dfrac{-1-\sqrt{7}}{4};cosx=\dfrac{-1+\sqrt{7}}{4}\)
1. Cho sinx = \(\dfrac{2}{3}\) , x ∈ (0,\(\dfrac{\Pi}{2}\))
Tính cosx, tanx , sin (x+\(\dfrac{\Pi}{4}\))
2. Cho cos = \(\dfrac{1}{4}\) . Tính sinx, cos2x
3. Cho tanx = 2 . Tính cosx, sinx
x ∈ (0,\(\dfrac{\Pi}{2}\))
4. Rút gọn a) A = cos2x - 2cos2x + sinx +1
b) B = \(\dfrac{cos3x+cos2x+cosx}{cos2x}\)
\(\dfrac{1+sinx+cos2x.sin\left(x+\dfrac{\pi}{4}\right)}{1+tanx}=\dfrac{1}{\sqrt{2}}cosx\)
Tìm GTNN và GTLN của hàm số sau:
1.\(y=cosx+cos\left(x-\dfrac{\pi}{3}\right)\)
2.\(y=sin^4x+cos^4x\)
3.\(y=3-2\left|sinx\right|\)
tìm tập xác định của các hàm số:
1.y=sin2x
2.y=\(\dfrac{1-cosx}{sinx}\)
3.y=\(\dfrac{1-2sinx}{cos2x}\)
4.y=tan\(\left(x+\dfrac{\pi}{4}\right)\)
Xét sự biến thiên của các hàm số
a, y = sinx trên (\(-\dfrac{\pi}{6}\);\(\dfrac{\pi}{3}\))
b, y = cosx trên (\(\dfrac{2\pi}{3}\);\(\dfrac{3\pi}{2}\))
Hàm số nào sau đây không là hàm số tuần hoàn? Giải thích?
tan2x; cosx+x; \(cot\left(x+\dfrac{\pi}{3}\right)\); sinx+1
cho phương trình \(2cos2x+sin^2xcosx+sinxcos^2x=m\left(sinx+cosx\right)\)tìm m để phương trình có ít nhất 1 nghiệm thuộc đoạn\(\left[0;\dfrac{\Pi}{2}\right]\)
Tìm txđ của hàm số sau:
1, \(y=sin\sqrt{\dfrac{1+x}{1-x}}\)
2,\(y=\sqrt{\dfrac{sinx+2}{cosx+1}}\)
3,\(y=\dfrac{2}{cosx-cos3x}\)
Tìm tập xác định của các hàm số sau:
y= tan\(\left(\dfrac{\Pi}{2}.cosx\right)\)
y= \(\dfrac{cosx}{\sqrt{sinx}}\)
y= \(\dfrac{\sqrt{tanx}}{cos^2x-2cosx+4}\)