\(\Leftrightarrow sin^4x+sin^3x+cos^3x=2\)
Do \(-1\le sinx;cosx\le1\)
\(\Rightarrow\left\{{}\begin{matrix}sin^3x\le sin^2x\\cos^3x\le cos^2x\\sin^4x\le1\end{matrix}\right.\)
\(\Rightarrow sin^4x+sin^3x+cos^3x\le1+sin^2x+cos^2x=2\)
Dấu "=" xảy ra khi và chỉ khi \(sinx=1\)
\(\Leftrightarrow x=\frac{\pi}{2}+k2\pi\)