Rút gọn
a,\(\sqrt{227-30\sqrt{2}}\) + \(\sqrt{123+22\sqrt{2}}\)
b,\(\dfrac{\sqrt{6+2\left(\sqrt{6}+\sqrt{3}+\sqrt{2}\right)}-\sqrt{6-2\left(\sqrt{6}-\sqrt{3}+\sqrt{2}\right)}}{\sqrt{2}}\)
c, \(\sqrt{2-\sqrt{3}}\) (\(\sqrt{5}\) + \(\sqrt{2}\))
Rút gọn :
a) \(\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}+\dfrac{x-y}{\sqrt{x}-\sqrt{y}}\)
b) \(\sqrt{\left(\sqrt{5}-1\right).\sqrt{13-\sqrt{69-28\sqrt{5}}}}\)
c) \(\dfrac{\sqrt{3+\sqrt{5}}.\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)}{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}\)
Giải các pt sau:
a, A=\(\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)
b, B=\(\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\)
c, C=(3.\(\sqrt{2}\) +\(\sqrt{6}\) ).\(\sqrt{6-3\sqrt{3}}\)
\(\left\{{}\begin{matrix}2\sqrt{2}y-\sqrt{3}x=-7\\3\sqrt{3}y+\sqrt{2}x=-2\sqrt{6}\end{matrix}\right.\)
Cho biểu thức : P= 1+\(\left(\dfrac{2a+\sqrt{a}-1}{1-a}-\dfrac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right).\dfrac{a-\sqrt{a}}{2\sqrt{a}-1}\)
a,Rút gọn P .
b,Chứng minh rằng \(P>\dfrac{2}{3}\)
c,Cho \(P=\dfrac{\sqrt{6}}{1+\sqrt{6}}\) ,tìm giá trị của a?
Rút gọn
\(P=\dfrac{\sqrt[3]{2}+\sqrt{7+2\sqrt{10}}+\sqrt[3]{3\sqrt[3]{4}-3\sqrt[3]{2}-1}}{\sqrt{5}+\sqrt{2}+1}\)
\(\left\{{}\begin{matrix}\left(\sqrt{5}+2\right)x+y=3-\sqrt{5}\\2y-x=6-2\sqrt{5}\end{matrix}\right.\)
Thực hiện phép tính:
\(A=\dfrac{\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}-\sqrt{10-4\sqrt{2}}+4}{\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}+2-\sqrt{2}}\)
Giải phương trình:
a) \(x^2+\sqrt{x+1}=1\)
b)\(\sqrt{3+x}+\sqrt{6-x}=3\)
c)\(\sqrt{3x-2}+\sqrt{x-1}=3\)
d)\(\sqrt{3+x}-\sqrt{2-x}=1\)
e)\(\sqrt{x+9}=5-\sqrt{2x+4}\)
f)\(\sqrt{3x+4}-\sqrt{2x-1}=\sqrt{x+3}\)
g)\(x-\sqrt{4x-3}=2\)