Rút gọn M và A sau đây :
M= \(\left(\dfrac{x}{x+3}+\dfrac{3-x}{x+3}.\dfrac{x^2+3x+9}{x^2-9}\right)\)
A= \(\left(\dfrac{3x}{1-3x}-\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{1-6x+9x^2}\)
Dạng 1: Rút gọn biểu thức
1:3x(x-2)-5x(1-x)-8(x^2-3)
2:(4x-5)(2x+3)-4(x+2)(2x-1)+10x+7
3:(6x+1)^2+(6x-1)^2-2(1+6x)(6x-1)
4: (x^2-2x+2)(x^2-2)(x^2+2x+2)(x^2+2)
5: (x+1)^3+(x-1)^3+x^3-3x(x+1)(x-1)
6:3(2^2+1)(2^4+1)........(2^64+1)+1
Bài 1: Tính:
a) x^2-9/2x+6 : 3-x/2
b) 2x/x-y - 2y/x-y
c) x+15/x^2-9 + 2/x+3
d)x+y/2x+2y - x-y/2x+2y - y^2+x^2/y^2-x^2
Bài 2: Rút gọn:
a) x^3-x/3x+3
b) x^2+3xy/x^2-9y^2
Bài 3: Thực hiện phép tính:
a) x/x-3 + 9-6x/x^2-3x
b) 6x-3/x : 4x^2-1/3x^2
Bài 1 : rút gọn các phân thức sau :
a)\(\frac{7x-14y}{x^2-4y^2}\) b)\(\frac{x^3+8}{x^4-25}:\frac{x^2-2x+4}{x^2+5}\) c)\(\frac{x^2+7x}{x^2-9}.\frac{x^2+6x+9}{x^2-49}\)
Bài 2: Thực hiện các phép phép tính sau :
a)\(\frac{3x+5}{4x^3y}-\frac{5-15x}{4x^3y}\) b) \(\frac{4x+7}{2x+2}-\frac{3x+6}{2x+2}\) c) \(\frac{18}{\left(x-3\right)\left(x^2-9\right)}-\frac{3}{x^2-6x+9}-\frac{x}{x^2-9}\)
d,5x+10/4x-8.4-2x/x+2
Bài 2: rút gọn
a, 6x ² y ³/8x ³y ²
b, x ³-x/3x+3
c, x ²+3xy/x ²-9y ²
d, x ²+4x+4/3x+6
Bài 3: Thực hiện phép tính
a, (x/x-3+(9-6x/x ²-3x)
b, 1/x-1/x+1
c, (x-12/6x-36)+(6/x ²-6x)
d, (6x-3/x):(4x ²-1/3x ²)
e, (x+y/2x-2y)-(x-y/2x+2y)-(y ²+x ²/y ²-x ²)
f, 7x+6/2x(x+7)-3x+6/2x ²+14x
g, (2/x+2-4/x ²+4x+4):(2/x ²-4+1/2-x)
\(\dfrac{\left(x^3-1-\dfrac{7-x^3}{x+x^3}\right).\dfrac{4}{x^5+3x^2}}{\dfrac{6x-24}{x^9+6x^6+9x^3}.\dfrac{2x}{3x^3+6}}\)
Viết biểu thức trên thành phân thức
Cho biểu thức M=x / x+3+2x / x-3-9-3x^2 / 9-x^2
a)Rút gọn bt M
b)Tìm x để M dương,M âm
c)Tìm giá trị của của M khi x thỏa mãn |2x+1|=5
d)Tìm x thuộc Z để M nhận giá trị nguyên
e)Tìm giá trị lớn nhất của N=M .x-3/x^2-2x+3
Chứng minh biểu thức sau không phụ thuộc vào biến x,y:
A= (3x - 5)(2x + 11) - (2x + 3)(3x + 7)
B = (2x + 3)(4x 2 - 6x + 9) - 2(4x 3 - 1)
C = (x - 1) 3 - (x + 1) 3 + 6(x + 1)(x - 1)
cho biểu thức P=\(\left(\dfrac{3}{x+1}+\dfrac{x-9}{x^2-1}+\dfrac{2}{1-x}\right):\dfrac{x-3}{x^2-1}\)
a.với đkxđ của P:x\(\ne\pm1;\)x\(\ne\pm3\). hãy rút gọn biểu thức P
b.tính giá trị của biểu thức P biết x^2-9=0
c.tìm các giá trị nguyên của x để P nhận giá trị nguyên