a: \(M=\dfrac{x+6\sqrt{x}-3\sqrt{x}+18-x}{x-36}\)
\(=\dfrac{3\left(\sqrt{x}+6\right)}{x-36}=\dfrac{3}{\sqrt{x}-6}\)
b: \(N=\dfrac{x^2}{y}\cdot\sqrt{xy\cdot\dfrac{y}{x}}-x^2\)
\(=\dfrac{x^2}{y}\cdot y-x^2=0\)
a: \(M=\dfrac{x+6\sqrt{x}-3\sqrt{x}+18-x}{x-36}\)
\(=\dfrac{3\left(\sqrt{x}+6\right)}{x-36}=\dfrac{3}{\sqrt{x}-6}\)
b: \(N=\dfrac{x^2}{y}\cdot\sqrt{xy\cdot\dfrac{y}{x}}-x^2\)
\(=\dfrac{x^2}{y}\cdot y-x^2=0\)
Rút gọn biểu thức 1) \(\dfrac{\sqrt{14}-\sqrt{21}}{\sqrt{7}}\) .
2) \(\dfrac{\sqrt{a^2+5a+6}}{\sqrt{a+3}}\)
3) \(\sqrt{3\left(x^2-10x+25\right)}.\sqrt{27}\) với x < 5
4)
\(\dfrac{y}{x}\sqrt{\dfrac{x^2}{y^4}}\) với x > 0; y < 0
5) \(\dfrac{1}{x-y}.\sqrt{x^6\left(x-y\right)^4}\) với x \(\ne\) y
Rút gọn biểu thức
A=\(\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)với x>0
1.giải hệ phương trình:
\(\left\{{}\begin{matrix}2x-y=3\\x+y=0\end{matrix}\right.\)
2.Rút gọn biểu thức
\(A=\dfrac{x+20}{x-4}+\dfrac{2}{\sqrt{x}+2}-\dfrac{6}{\sqrt{x}-2}\) với x\(\ge\)0;x\(\ne\)4
Rút gọn các biểu thức:
\(A=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{x-4}{3\sqrt{x}}\)
\(B=\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{1}{\sqrt{a}+2}+\dfrac{6-7\sqrt{a}}{a-4}\right).\left(\sqrt{a}+2\right)\)
Rút gọn
a) với x>0 , x\(\ne\)1
\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}+2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}-1\right)}\)
b) với a>0,a\(\ne\)4
\(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\)
c)\(\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\left(1-\dfrac{1}{\sqrt{a}}\right)\) với a>0 ,a\(\ne\)1
d)\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\) với x>1
1. Cho 3 số dương \(x,y,z\) thoả mãn điều kiện \(xy+yz+zy=1\) . Tính:
\(A=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
2. Tìm Min của biểu thức:
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
3. Cho biểu thức:
\(A=\left[\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right).\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]:\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) với \(x>0;y>0\)
a, Rút gọn A.
b, Biết \(xy=16\) . Tìm các giá trị của x,y để A có giá trị nhỏ nhất. Tìm giá trị đó
* Cho biểu thức
A= \(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\) với x > 0, x ≠ 1
a. Rút gọn biểu thức A
b. Tính giá trị của x khi A > \(\dfrac{1}{6}\)
Bài 1: Rút gọn
a) \(\left(\dfrac{1}{x-4}-\dfrac{1}{x+4\sqrt{x}+4}\right).\dfrac{x+2\sqrt{x}}{\sqrt{x}}\) với x>0 x≠4
b)\(\left(2+\dfrac{3+\sqrt{3}}{\sqrt{3}-1}\right).\left(2-\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\right)\)
c)\(\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}-\dfrac{\sqrt{a}}{\sqrt{ab}-b}\right)\left(a\sqrt{b}-b\sqrt{a}\right)\)
Bài 2: Cho P=\(\left(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\dfrac{a+2}{a-2}\) với a>0, a≠1, a≠2
a)Rút gọn P
b)Tìm a ∈ Z để P có giá trị nguyên
Cho biểu thức:
\(A=\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{8\sqrt{x}}{4-x}\right):\dfrac{\sqrt{x}+2}{1-2\sqrt{x}}\)
với x ≥ 0 , x ≠ 4 . x ≠ 1/4
a. Rút gọn A
b. Tìm x để A = -1/3