rút gọn biểu thức sau
\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
rút gọn \(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{3+\sqrt{x}}\) ,tìm giá trị của x khi E=\(\frac{1}{2}\)
Rút gọn: \(\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}\)
1
Cho M = \(\frac{2\sqrt{y}}{x-y}+\frac{1}{\sqrt{x-\sqrt{y}}}+\frac{1}{\sqrt{x+\sqrt{y}}}\)
rút gọn M
2
Cho N = \(\frac{2\sqrt{x}}{\sqrt{x+3}}+\frac{\sqrt{x+1}}{\sqrt{x-3}}+\frac{11\sqrt{x-3}}{x-9}\)
a rút gọn N
b tính giá trị N khi x= 49
3 tính
\(\frac{\sqrt{5}}{1-\sqrt{3}}-\sqrt{3}+\frac{1}{1+\sqrt{3}}\)
giúp mình giải bài này với ạ mình đang cần rất gấp minh😭🙏 cảm ơn trước ạ
Rút gọn biểu thức
a)\(\sqrt{3}-\sqrt{2}-\sqrt{\sqrt{3}+\sqrt{2}}\)
b)\(\sqrt{11-4\sqrt{7}}-\sqrt{2}\cdot\sqrt{8+3\sqrt{7}}\)
c)\(\frac{x+\sqrt{xy}}{y+\sqrt{xy}}\)
d)\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{x-\sqrt{x}}\left(x>0;x\ne1\right)\)
e)\(\frac{4-4\sqrt{x}}{x-2\sqrt{x}-35}+\frac{2}{\sqrt{x}-7}-\frac{3}{\sqrt{x}+5}\left(x\ge0:x\ne49\right)\)
f)\(\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}:\frac{1}{\sqrt{x}-\sqrt{y}}\)
1. Rút gọn
D = \(\frac{\sqrt{1+\frac{2\sqrt{2}}{3}}+\sqrt{1-\frac{2\sqrt{2}}{3}}}{\sqrt{1+\frac{2\sqrt{2}}{3}}-\sqrt{1-\frac{2\sqrt{2}}{3}}}\)
2. Chứng minh rằng:
\(\frac{a\sqrt{b}+b}{a-b}.\sqrt{\frac{ab+b^2-2\sqrt{ab^3}}{a\left(a+2\sqrt{b}\right)+b}}\left(\sqrt{a}+\sqrt{b}\right)=b\) với ( a > b > 0 )
cho biểu thức:
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a) tìm ĐKXĐ và rút gọn A
b) tìm x để A = \(\frac{1}{2}\)
Rút gọn
A= \(\frac{8+2\sqrt{15}+\sqrt{21}+\sqrt{35}}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)
B= \(\frac{1}{\sqrt{1}+\sqrt{2}}\)+\(\frac{1}{\sqrt{2}+\sqrt{3}}\)+\(\frac{1}{\sqrt{3}+\sqrt{4}}\)+\(\frac{1}{\sqrt{4}+\sqrt{5}}\)+\(\frac{1}{\sqrt{5}+\sqrt{6}}\)
Rút gọn P=\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
helppp