Rút gọn biểu thức P=(1-sina+cosa)/(1-sina-cosa)
cho sina+cosa=1/2, tinh |sina-cosa|
Tính sin2a khi sina-cosa = 1/5
Cm biểu thức ko phụ thuộc x
\(A=\dfrac{cot^2a-cos^2a}{cot^2a}+\dfrac{sinacosa}{cota}\)
A= sin8x+\(2cos^2x\left(4x+\dfrac{\pi}{4}\right)\)
Cm đẳng thức
\(\dfrac{sin2a-2sina}{sin2a+2sina}+tan^2\dfrac{a}{2}=0\)
\(\dfrac{sina}{1+cosa}+\dfrac{1+cosa}{sina}=\dfrac{2}{sina}\)
\(\dfrac{sin^2x}{sinx-cosx}-\dfrac{sinx+cosx}{tan^2x-1}=sinx+cosx\)
\(\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{1-tan^2a.cot^2b}=-cos^2a.sin^2b\)
Cho sina + cosa =1/2 tinh sin^4a +cos^4a
Help me
chứng minh rằng
1) \(sina+\sqrt{3}cosa=2cos\left(a-\frac{\pi}{6}\right)\)
rút gọn
\(\dfrac{sin2a+1}{cos2a}-\dfrac{1-sin2a}{sina-cosb}\)
Rút gọn biểu thức: \(B=\dfrac{1+sina}{1-sina}-\dfrac{1-sina}{1+sina}\)
rút gọn:
a, A=\(\frac{sina+sin2a+sin3a}{cosa+cos2a+cos3a}\)
b, B=\(\frac{sin^2a+sin^2a.tan^2a}{cos^2a+cos^2a.cot^2a}\)