\(D=\dfrac{a^3-4a^2-a+4}{a^3-7a^2+14a-8}\)
\(=\dfrac{a^2\left(a-4\right)-\left(a-4\right)}{a^3-4a^2-3a^2+12a+2a-8}\)
\(=\dfrac{\left(a^2-1\right)\left(a-4\right)}{a^2\left(a-4\right)-3a\left(a-4\right)+2\left(a-4\right)}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)\left(a-4\right)}{\left(a^2-3a+2\right)\left(a-4\right)}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)}{a^2-2a-a+2}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)}{a\left(a-2\right)-\left(a-2\right)}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)}{\left(a-1\right)\left(a-2\right)}=\dfrac{a+1}{a-2}\)
Vậy...