a: \(=2+\sqrt{3}+2-\sqrt{3}=4\)
b: \(=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
a: \(=2+\sqrt{3}+2-\sqrt{3}=4\)
b: \(=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
Rút gọn các biểu thức sau:
a. A = \(\dfrac{1}{2-\sqrt{3}}+\dfrac{1}{2+\sqrt{3}}\)
b. B = \(\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\) (x > 0 ; x ≠ 1)
Rút gọn biểu thức sau:
A = \(\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\) . \(\left(\sqrt{x}-1\right)\)
Rút gọn các biểu thức sau:
\(a.A=2\sqrt{3}-\sqrt{75}+2\sqrt{12}\)
\(b.B=\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}\)
\(c.C=\left(\dfrac{x+2\sqrt{x}}{x-2\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\right).\dfrac{1}{\sqrt{x}+1}\) (x > 0;x ≠ 4)
a.Thực hiện phép tính:
A = \(-3\sqrt{8}+\sqrt{50}+\sqrt{\left(1-\sqrt{2}\right)^2}\)
b.Rút gọn biểu thức
B = \(\left(\dfrac{5\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}-x}\right).\left(1-\dfrac{1}{\sqrt{x}}\right)\) với x > 0 và x≠ 1
cho biểu thức P = \(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{3-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a, rút gọn P
b, tìm x để P < \(\dfrac{1}{2}\)
c, tìm giá trị nhỏ nhất của P
Rút gọn biểu thức B= \(\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\left(1-\dfrac{3}{\sqrt{x}}\right)\)
Câu 1.
Cho hai biểu thức \(A=\dfrac{\sqrt{x}+2}{1+\sqrt{x}}\) và \(B=\left(\dfrac{2\sqrt{x}}{x-\sqrt{x}-6}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}\) với \(x\ge0,x\ne9\).
1) Tính giá trị biểu thức A khi x = 36.
2) Rút gọn biểu thức B.
3) Với x ∈ \(\mathbb{Z}\), tìm giá trị lớn nhất của biểu thức P = A.B.
Câu 2.
Giải bài toán sau bằng cách lập hệ phương trình:
Theo kế hoạch, hai xí nghiệp A và B phải làm tổng cộng 720 dụng cụ cùng loại. Trên thực tế do cải tiến kĩ thuật, xí nghiệp A hoàn thành vượt mức 12%, còn xí nghiệp B hoàn thành vượt mức 10% so với kế hoạch. Do đó thực tế cả hai xí nghiệp làm được tổng cộng 800 dụng cụ. Tính số dụng cụ mỗi xí nghiệp phải làm theo kế hoạch?
Câu 3.
1) Giải phương trình: 3x4 - 2x2 - 40 = 0
2) Cho phương trình x2 + (m - 1)x - m2 - 2 = 0 (1), với m là tham số thực.
a) Chứng minh phương trình (1) luôn có hai nghiệm trái dấu x1, x2 với mọi giá trị của m.
b) Tìm m để biểu thức \(T=\left(\dfrac{x_1}{x_2}\right)^3+\left(\dfrac{x_2}{x_1}\right)^3\) đạt giá trị lớn nhất.
Câu 4.
Cho (O; R) và một điểm P nằm ngoài đường tròn. Kẻ hai tiếp tuyến PA, PB với đường tròn (A, B là tiếp điểm). Tia PO cắt đường tròn tại hai điểm K và I (K nằm giữa P và O) và cắt AB tại H. Gọi D là điểm đối xứng với B qua O, C là giao điểm của PD với đường tròn (O).
1) Chứng minh tứ giác BHCP nội tiếp.
2) Chứng minh PC.PD = PO.PH.
3) Đường tròn ngoại tiếp tam giác ACH cắt IC tại M. Tia AM cắt BI tại Q. Chứng minh tam giác AQH cân.
4) Giả sử \(\widehat{BDC}=45^o\). Tính diện tích tam giác PBD phần nằm bên ngoài đường tròn (O) theo R.
Câu 5.
Tìm m để phương trình ẩn x sau đây có ba nghiệm phân biệt. x3 - 2mx2 + (m2 + 1)x - m = 0.
Cho biểu thức A= \(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\dfrac{\sqrt{x}-2}{x-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\) với x>0 và x\(\ne\)1. Rút gọn biểu thức A
a) tính A=\(3\sqrt{8}-\sqrt{50}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
b) tìm giá trị của tham số m để hàm số y=(2-m)x+2 đồng biến trên R
c)rút gọn biểu thức P=\(\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)và tìm các giá trị của x để P>\(\dfrac{1}{2}\)