\(=4\sqrt{x}-5\cdot2\sqrt{x}-5\sqrt{x}-3\sqrt{x}-5=4\sqrt{x}-10\sqrt{x}-5\sqrt{x}-3\sqrt{x}-5=-14\sqrt{x}-5\)
\(=4\sqrt{x}-5\cdot2\sqrt{x}-5\sqrt{x}-3\sqrt{x}-5=4\sqrt{x}-10\sqrt{x}-5\sqrt{x}-3\sqrt{x}-5=-14\sqrt{x}-5\)
Rút gọn các biểu thức sau với \(x\ge0\)
a) \(4\sqrt{x}-5\sqrt{4x}-\sqrt{25x}-3\sqrt{x}-5\)
b) \(\sqrt{16x}-5\left(\sqrt{x}-2\right)\sqrt{79x}-5\)
cho biểu thức P= \(\left(\dfrac{\sqrt{x}+1}{x-2\sqrt{x}}-\dfrac{1}{\sqrt{x}-2}\right)\times\left(x-3\sqrt{x}+2\right)\)với x>0 và x≠4.
a) Rút gọn P,
b)Tìm x để P< \(\dfrac{1}{2}\)
c, Tìm gt nguyên của x để P có gt nguyên
cho biểu thức Q=\(\left(\dfrac{1}{\sqrt{X}-1}-\dfrac{1}{\sqrt{X}}\right):\left(\dfrac{\sqrt{X}+1}{\sqrt{X}-2}-\dfrac{\sqrt{X}+2}{\sqrt{X-1}}\right)\)
a rút gọn Q
b tìm x để Q>0
cho biểu thức P =\(\left(\dfrac{\sqrt{x}}{\sqrt{x-1}}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\)với 0<x≠1.
a) Rút gọn P.
b)Tìm x để P >2
giải các phương trình
a \(\sqrt{7+\sqrt{2x}=3+\sqrt{5}}\)
b \(\sqrt{3x^2-4x}=2x-3\)
c\(\dfrac{\left(7-x\right)\sqrt{7-x}+\left(x-5\right)\sqrt{x-5}}{\sqrt{7-x}+\sqrt{x-5}}=2\)
1. Khẳng định nào sau đây là đúng?
a, \(3\sqrt{5}=\sqrt{30}\) ; b, \(-3\sqrt{5}=-\sqrt{30}\) ; c, \(-3\sqrt{5}=-\sqrt{45}\) ; d, \(-3\sqrt{5}=\sqrt{45}\);
2. Khẳng định nào sau đây là sai?
a, \(\sqrt{\left(-3\right)^2}.5=-3\sqrt{5}\) b, \(\sqrt{3^2.5}=3\sqrt{5}\)
c, \(\sqrt{9x^2}=-3x\) với x≤0 c, \(\sqrt{\left(x-3\right)^2}=3-x\) với x≤3
3. Khoanh vào chữ đặt trước câu trả lời đúng:
Giá trị của biểu thức \(\dfrac{1}{\sqrt{3}+\sqrt{2}}\) \(\dfrac{1}{\sqrt{3}-\sqrt{2}}\) bằng:
a, 0 ; b, 4 ; c, 2\(\sqrt{2}\) ; d, \(-2\sqrt{2}\)
4. Khoanh vào chữ đặt trước câu trả lời đúng:
Trục căn thức ở mẫu của \(\dfrac{\sqrt{17}}{4+\sqrt{17}}\) ta được:
a, 4 ; b, \(\dfrac{1}{4}\) ; c, \(\sqrt{17}\left(4-\sqrt{17}\right)\) ; d, \(\sqrt{17}\left(\sqrt{17}-4\right)\)
5. Rút gọn các biểu thức (giả sử các biểu thức đều có nghĩa);
a, \(\sqrt{\dfrac{x}{y^3}+\dfrac{2x}{y^4}}\) ; b, \(\dfrac{x-\sqrt{xy}}{\sqrt{x}-\sqrt{y}}\)
c, \(\left(a-b\right)\sqrt{\dfrac{a^2b^2}{\left(a-b\right)^2}}\) ; c, \(\dfrac{a-\sqrt{3a}+3}{a\sqrt{a}+3\sqrt{3}}\)
Khai triển và rút gọn các biểu thức (với x, y không âm)
a) \(\left(4\sqrt{x}-\sqrt{2x}\right)\left(\sqrt{x}-\sqrt{2x}\right)\)
b) \(\left(2\sqrt{x}+\sqrt{y}\right)\left(3\sqrt{x}-2\sqrt{y}\right)\)
Chứng minh biểu thức không phụ thuộc biến:
\(\dfrac{2x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}+\dfrac{5\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}+\dfrac{\sqrt{x}+10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\) (x >/0)
cho biểu thức p=\(\dfrac{3\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
a rút gọn p
b tìm x để p<15/4