P=\(\dfrac{\sqrt{X}}{\sqrt{X}+1}+\dfrac{\sqrt{X}}{\sqrt{X}-1}\cdot\left(\sqrt{X}-\dfrac{1}{\sqrt{X}}\right)\)
=\(\dfrac{\sqrt{X}\left(\sqrt{X}-1\right)+\sqrt{X}\left(\sqrt{X}+1\right)}{X-1}\cdot\dfrac{X-1}{\sqrt{X}}\)
=\(\dfrac{X-\sqrt{X}+X+\sqrt{X}}{X-1}\cdot\dfrac{X-1}{\sqrt{X}}\)
=\(\dfrac{2X}{X-1}\cdot\dfrac{X-1}{\sqrt{X}}\)
P=\(\dfrac{2X}{\sqrt{X}}\)