M= \(\sqrt{x-1-2\sqrt{x-2}}\)
= \(\sqrt{x-2-2\sqrt{x-2}+1}\)
= \(\sqrt{\left(\sqrt{x-2}+1\right)^2}\)
= \(|\sqrt{x-2}+1|\)
= \(\sqrt{x-2}+1\)
M= \(\sqrt{x-1-2\sqrt{x-2}}\)
= \(\sqrt{x-2-2\sqrt{x-2}+1}\)
= \(\sqrt{\left(\sqrt{x-2}+1\right)^2}\)
= \(|\sqrt{x-2}+1|\)
= \(\sqrt{x-2}+1\)
rút gọn hoạc tính giá trị các biểu thức sau
1)1+\(\sqrt{\dfrac{\left(x-1\right)^2}{x-1}}\)
2)\(\sqrt{\left(x-2\right)^2}+\dfrac{x-2}{\sqrt{\left(x-2\right)^2}}\)
3)\(\sqrt{m}-\sqrt{m-2\sqrt{m}+1}\)
Rút gọn các biểu thức sau :
a,\(\dfrac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}\)
b,\(\dfrac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
c,\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
d, D=\(\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{9\left(x^2+2xy+y^2\right)}{4}}\) \(\left(vớix\ne y,x\ne-y\right)\)
\(B=\dfrac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}-2}{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}+2}\)với x > 0 rút gọn biểu thức ( cho em xin lời giải chi tiết ạ )
\(\sqrt{\dfrac{27\left(x-1\right)^2}{12}}+\dfrac{3}{2}-\left(x-2\right)\sqrt{\dfrac{50x^2}{8\left(x-2\right)^2}}\)rút gọn biểu thức : Đk : 1 <x<2 ( cho em xin lời giải chi tiết ạ )
rút gọn biểu thức
\(\dfrac{x\sqrt{y}-y\sqrt{x}}{x-\sqrt{xy}+y}\)
Bài 1 : Rút gọn biểu thức sau :
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Bài 2 : Chứng minh đẳng thức sau :
\(\sqrt{8+2\sqrt{10+2\sqrt{5}}}.\sqrt{8-2\sqrt{10+2\sqrt{5}}}=2\sqrt{5}-2\)
Bài 3 : Cho biểu thức E = \(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\)
a) Rút gọn biẻu thức E
b) Tính giá trị của E khi x = \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
Cho biểu thức P = \(\frac{3.\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\frac{\sqrt{x}+3}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x-1}}\)
Rút gọn biểu thức
2) Cho số thực alpha <= 1 . Rút gọn biểu thức P= sqrt 15 2 - sqrt 10. (a - 1) ^ 2 3 .
rút gọn biểu thức \(x-\sqrt{xy}+y\)