I . Rút gọn biểu thức
a. \(\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{3\left(x+y\right)^2}{2}}\)
b. \(\dfrac{2}{2a-1}\sqrt{5a^2\left(1-4a+4a^2\right)}\)
Rút gọn
a)\(A=\dfrac{2}{x^2-y^2}.\sqrt{\dfrac{3x^2+6xy+3y^2}{4}}\)
b)\(B=\dfrac{1}{2a-1}.\sqrt{5a^4\left(1-4a+4a^2\right)}\)
Cho biểu thức P = \(\left(\dfrac{4a}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right).\dfrac{\sqrt{a}-1}{a^2}\) với a>0 và a \(\ne\)1
a)Rút gọn biểu thức P b)Với giá trị nào của a thì P = 3
rút gọn biểu thức
\(\left(\sqrt{a+1}-\dfrac{1}{\sqrt{a+1}}\right)\left(\dfrac{a^2+3\sqrt{a+1}-2a}{a}+2-a\right)\) với a>-1;a khác 0
1. Cho biểu thức: A=\(\left(\sqrt{x}+\dfrac{4\sqrt{x}}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4}{2\sqrt{x}-x}\right)\)
Rút gọn biểu thức trên
Rút gọn các biểu thức sau:
a) \(\sqrt{50}-\sqrt{18}\)
b) \(\left(\dfrac{2}{a^2+a}-\dfrac{2}{a+1}\right):\dfrac{1-a}{a^2+2a+1}\) (với a\(\ne0\) và a\(\ne\pm1\)).
1. Cho biểu thức: A=\(\left[\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\dfrac{a+\sqrt{a}}{a-1}\right]:\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{1}{\sqrt{a}-1}\right)\)
Rút gọn biểu thức trên
1. Cho biểu thức: A=\(\left(\dfrac{\sqrt{x}}{x-\sqrt{x}}-\dfrac{2}{x\sqrt{x}-x+\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}}{x+1}\right)\)
Rút gọn biểu thức trên
Rút gọn các biểu thức sau:
a) \(\left(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}+1\right)\left(\sqrt{3}-1\right)\)
b) \(\left(\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{2}{\sqrt{x+1}}\right)\) với x>0