Đặt \(\left\{{}\begin{matrix}\sqrt[3]{a}=x\\\sqrt[3]{b}=y\end{matrix}\right.\) thì ta có:
\(Q=\dfrac{x^4+x^2y^2+y^4}{x^2+xy+y^2}=\dfrac{\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)}{x^2+xy+y^2}=x^2-xy+y^2\)
Vậy \(Q=\sqrt[3]{a^2}-\sqrt[3]{ab}+\sqrt[3]{b^2}\)