Đặt \(\sqrt[3]{2}=a\)
\(A+\dfrac{a+a^2+a^3}{a^2+a+1}=\dfrac{a\left(a^2+a+1\right)}{a^2+a+1}=a=\sqrt[3]{2}\)
Đặt \(\sqrt[3]{2}=a\)
\(A+\dfrac{a+a^2+a^3}{a^2+a+1}=\dfrac{a\left(a^2+a+1\right)}{a^2+a+1}=a=\sqrt[3]{2}\)
bài 1 rút gon biểu thức
\(6\sqrt{\dfrac{2}{3}}-\sqrt{24}+2\sqrt{\dfrac{3}{8}}+2\sqrt{\dfrac{1}{6}}\)
\(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
a, rut gon A
b, tinh A voi \(4-2\sqrt{3}\)
rut gon C= \((\dfrac{1-\sqrt{3}}{1+\sqrt{3}}-\dfrac{1+\sqrt{3}}{1-\sqrt{3}}):\sqrt{108}\)
cho P=\(\left(\dfrac{3}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{x-1}\right):\left(\dfrac{x+2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\\ \)
a, rut gon
b, tim x de P=\(\sqrt{x}-1\)
Bài 1: Rút gọn biểu thức sau:
a. \(A=\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{1}{\sqrt{4}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2019}+\sqrt{2018}}\)
b. \(B=\dfrac{1}{\sqrt{2}+\sqrt{1}}+\dfrac{1}{2\sqrt{3}+3\sqrt{2}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{2018\sqrt{2017}+2017\sqrt{2018}}\)
Thu gọn biểu thức
A=\(\sqrt{\dfrac{3\sqrt{3}}{2\sqrt{3}+1}}-\sqrt{\dfrac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
B=\(\dfrac{x\sqrt{x}-2x+28}{x-3\sqrt{x}-4}-\dfrac{\sqrt{x}-4}{\sqrt{x}+1}+\dfrac{\sqrt{x}+8}{4-\sqrt{x}}\left(x\ge0,x\ne16\right)\)
(2,0 điểm) Cho các biểu thức A = (sqrt(x))/(2sqrt(x) - 4); B = (sqrt(x))/(sqrt(x) + 2) +3(sqrt(x)-x /x-4 với x >= 0 ,x ne4 1) Tính giá trị của A khi x = 36 . 2) Rút gon biểu thức C = B : A . 3) Tìm các giá trị của x để C. sqrt(x) < 4/3 .
1.cho biểu thức A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}-\dfrac{1}{\sqrt{x}-2}\)với(x≥0;x≠4)
a)rút gọn A
b)tính A khi x=6+4\(\sqrt{2}\)
2.cho biểu thức P=\(\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}-\dfrac{8x}{x-4}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}+3\right)\)với x≥0;x≠1;x≠4
a)rút gọn P
b)tìm x để P=-4
Rút gọn các biểu thức:
1. \(\sqrt{28}-2\sqrt{252}+3\sqrt{175}+3\sqrt{567}\)
2. \(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{7-4\sqrt{3}}\)
3. \(\sqrt{9-4\sqrt{5}}-\sqrt{\dfrac{8}{7-3\sqrt{5}}}\)
4. \(\dfrac{\sqrt{3}}{2-\sqrt{3}}+\dfrac{2}{2+\sqrt{3}}\)
5. \(\dfrac{2\sqrt{2}+1}{1+\sqrt{2}}+\dfrac{1-2\sqrt{2}}{1-\sqrt{2}}+\left(2-\sqrt{3}\right).\left(2+\sqrt{3}\right)\)
6. \(\sqrt{\dfrac{2}{3-\sqrt{5}}}+\sqrt{\dfrac{2}{7+\sqrt{45}}}\)
7. \(\dfrac{\sqrt{2}}{\sqrt{1+\sqrt{2}}-1}-\dfrac{\sqrt{2}}{\sqrt{1+\sqrt{2}}+1}\)
8. \(\sqrt{6-2\sqrt{5}}+\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}-\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}\)