Biểu thức trên = \(\frac{21.\left(\sqrt{4+2\sqrt{3}}+\sqrt{6-2\sqrt{5}}\right)^2}{2}\)\(-\frac{6.\left(\sqrt{4-2\sqrt{3}}+\sqrt{6+2\sqrt{5}}\right)^2}{2}\)\(-15\sqrt{15}\)
\(=\frac{21.\left(\sqrt{3+2\sqrt{3}+1}+\sqrt{5-2\sqrt{5}+1}\right)^2}{2}-\frac{6.\left(\sqrt{3-2\sqrt{3}+1}+\sqrt{5+2\sqrt{5}+1}\right)^2}{2}-15\sqrt{15}\)
\(=\frac{21.\left(\sqrt{3}+\sqrt{5}\right)^2}{2}-\frac{6.\left(\sqrt{3}+\sqrt{5}\right)^2}{2}-15\sqrt{15}\) (đoạn này làm tắt)
\(=\frac{15.\left(\sqrt{3}+\sqrt{5}\right)^2}{2}-15\sqrt{15}\)\(=\frac{15.\left(8+2\sqrt{15}\right)}{2}-15\sqrt{15}\)
\(=60+15\sqrt{15}-15\sqrt{15}=60\)