A=\(\sqrt{\sqrt{6}+\sqrt{3+2\sqrt{2}}}.\sqrt{3+2\sqrt{2}}.\sqrt{\sqrt{6}-\sqrt{3+2\sqrt{2}}}\)
=\(\sqrt{\left(\sqrt{6}+\sqrt{3+2\sqrt{2}}\right)\left(\sqrt{6}-\sqrt{3+2\sqrt{2}}\right)}.\sqrt{3+2\sqrt{2}}\)
=\(\sqrt{3-2\sqrt{2}}.\sqrt{3+2\sqrt{2}}\)
\(=\sqrt{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}=\sqrt{9-8}=1\)