A=\(\frac{\left(cos7x+cos10x\right)-\left(cos8x+cos9x\right)}{\left(sin7x+sin10x\right)-\left(sin8x+sin9x\right)}\) =\(\frac{2cos\frac{17x}{2}.cos\frac{3x}{2}-2cos\frac{17x}{2}.cos\frac{x}{2}}{2sin\frac{17x}{2}.cos\frac{3x}{2}-2sin\frac{17x}{2}.cos\frac{x}{2}}\)
=\(\frac{2cos\frac{17x}{2}\left(cos\frac{3x}{2}-cos\frac{x}{2}\right)}{2sin\frac{17x}{2}\left(cos\frac{3x}{2}-cos\frac{x}{2}\right)}\)=\(\frac{cos\frac{17x}{2}}{sin\frac{17x}{2}}\)=cotg\(\frac{17x}{2}\)