\(A=\dfrac{2\left(\sqrt{x}-2\right)}{x-4}+\dfrac{\sqrt{x}}{\sqrt{x}+2}=\dfrac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}+2}=\dfrac{2+\sqrt{x}}{\sqrt{x}+2}=1\)
\(A=\dfrac{2\left(\sqrt{x}-2\right)}{x-4}+\dfrac{\sqrt{x}}{\sqrt{x}+2}=\dfrac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}+2}=\dfrac{2+\sqrt{x}}{\sqrt{x}+2}=1\)
1. Cho biểu thức: A=\(\left(\sqrt{x}+\dfrac{4\sqrt{x}}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4}{2\sqrt{x}-x}\right)\)
Rút gọn biểu thức trên
rút gọn biểu thức sau
a.\(\sqrt{8}-\sqrt{18}+2\sqrt{32}\)
b.\(\left(\dfrac{1}{\sqrt{x}+4}+\dfrac{1}{\sqrt{x}-4}\right)\dfrac{\sqrt{x}+4}{\sqrt{x}}\) với x>0,x\(\ne16\)
Rút gọn các biểu thức sau:
a) \(\dfrac{4}{\sqrt{11}-3}-\dfrac{5}{4+\sqrt{11}}\)
b) \(\left(\dfrac{3\sqrt{x}}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}+13}{x+6\sqrt{x}+9}\) với x>0;x\(\ne\)4
rút gọn các biểu thức sau
a.A=\(\dfrac{4}{3+\sqrt{7}}+\sqrt{28}\)
b.B=\(\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}+1}-\dfrac{2}{\sqrt{x}}\right):\dfrac{2-\sqrt{x}}{x-1}\) (với x>0; x\(\ne\)1; x\(\ne4\))
Rút gọn các biểu thức sau:
a) \(\left(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}+1\right)\left(\sqrt{3}-1\right)\)
b) \(\left(\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{2}{\sqrt{x+1}}\right)\) với x>0
A=\(1-\left(\dfrac{2}{1+2\sqrt{x}}-\dfrac{5\sqrt{x}}{4x-1}-\dfrac{1}{1-2\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{4x+4\sqrt{x}+1}\)
Rút gọn biểu thức trên
Câu 1 (2 điểm).
a) Tính \(\sqrt{64}+\sqrt{16}-2\sqrt{36}\).
b) Rút gọn biểu thức P=\(\left(\dfrac{1}{\sqrt{x}}-\dfrac{2}{1+\sqrt{x}}\right).\dfrac{x+\sqrt{x}}{1-\sqrt{x}}\), với x>0; x\(\ne1\).
1.cho biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\) với x>0,x\(\ne4\)
a.rút gọn biểu thức M
b.tính giá trị của M khi x=3+2\(\sqrt{2}\)
c.tìm giá trị của x để M>0
1) Rút gọn biểu thức
P=\(\left(\dfrac{x+2\sqrt{x}+4}{x\sqrt{x}-8}+\dfrac{x+2\sqrt{x}+4}{x-1}\right):\left(3+\dfrac{1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+1}\right)\)