\(A=\sqrt{\left(\sqrt{3}-1\right)^2}-\frac{\left(3+2\sqrt{3}\right)\left(\sqrt{3}-1\right)}{2\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\frac{\sqrt{3}}{3}\)
\(=\sqrt{3}-1-\frac{3+\sqrt{3}}{4}+\frac{\sqrt{3}}{3}=\frac{13\sqrt{3}-21}{12}\)
Đặt \(\sqrt[3]{a}=x\Rightarrow B=\frac{x^3-1}{x^2+x+1}=\frac{\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}=x-1=\sqrt[3]{a}-1\)