= 4x2+4xy+y2+x2-4xy+4y2-5(x2-y2)
=5x2+5y2-5x2+5y2
=10y2
= 4x2+4xy+y2+x2-4xy+4y2-5(x2-y2)
=5x2+5y2-5x2+5y2
=10y2
bài 1: Rút gọn rồi tính giá trị biểu thức:
a, ( 2x + y )^2 - ( 2x + y ) ( ( 2x - y ) + y ( x - y ) với x = -2 ; y = 3
b, ( a - 3b )^2 - ( a + 3b )^2 ( a - 1 ) ( b - 2) với a = 1/2 ; b = -3
c, ( 2x - 5 ) ( 2x + 5 ) ( 2x + 1)^2 với x = -2005
rút gọn rồi tính giá trị của biểu thức với x=1/2 ; y= -3
A= (x+y)^2 + (x-y)^2 + 2.(x+y).(x-y)
B= 3.(x-y)^2 - 2.(x+y)^2 - (x-y).(x+y)
C=(x+y)^3 - (x-y)^3 - (6x^2y +1)
D=(x+y).(x^2 - xy + y^2) - (x+y)^3
tính giá trị của biểu thức:
A=5x^2z-10xyz+5y^2z với x=124;y=24;z=2
B=2x^2+2y^2-x^2z+z-y^2z-2 với x=1;y=1;z=-1
C=x^2-y^2+2y-1 với x=75;y=26
Tìm giá trị lớn nhất A=x(4-x)
Rút gọn rồi tính
A=(7x+5)2+(3x-5)2-(10x-6x)(5+7x)
Tại x=-2
B=(2x+y)(y2+4x^2-2xy)-8x(x-1)(x+1)
Tại x=-2 y=3
phân tích đa thức thành nhân tử
[2(x-2y+z)3+4(2y-x-z)2 ]: (2z-4y+2x)
[(12(y-z)4-3(2-y)5]:6(y-z)2
Tính giá trị biểu thức:
A= (5x-2y).(2y+5x) tại x=-2 và y=-10
B= (2x-5).(4x2+10x+25) tại x=2
C= (3x+2y).(9x2-6xy+4y2) tai x=-1 va y=\(\dfrac{1}{2}\)
Bài 1 : Phân tích thành nhân tử 1) x^2 - x - y^2 - y 2) x^2 - y^2 +x - y 3) 3x - 3y + x^2 - y^2 4) 5x - 5y + x^2 - y^2 5) x^2 - y^2 + 2x -2y 6) x( x-y) + x^2 - y^2 7) x^2 - y^2 - 2x -2y
Bài 1 : Phân tích các đa thức sau thành nhân tử :
a) \(2x-2y-x^2+2xy-y^2\)
b) \(x^3-x+3x^2y+3xy^2+y^3-y\)
c) \(x^3-xy^2+x^2y-y^2z\)
1. x^2-y^2-2x+2y 2. x^3-x+3x^2y+3xy^2+y^3-y. 3. 4x^4y^4+1. 4. x^2-2x-4y^2-4y. 5.x^3-x^2-x+1. 6.x^2y-x^3-9y+9x. 7.x^3-2x^2+x-xy^2. 8.x^2-2x-4y^2-4y.