ta có : \(\left(x+y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)^2=\left(2x\right)^2=4x^2\)
ta có : \(\left(x+y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)^2=\left(2x\right)^2=4x^2\)
Rút gọn biểu thức :
a) \(\left(x+y\right)^2+\left(x-y\right)^2\)
b) \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
c) \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)
Rút gọn các biểu thức :
a) \(P=\left(5x-1\right)+2\left(1-5x\right)\left(4+5x\right)+\left(5x+4\right)^2\)
b) \(Q=\left(x-y\right)^3+\left(x+y\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
\(\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)
Rút gọn
rút gọn biểu thức
a) \(\left(x+y\right)^2+\left(x-y\right)^2\)
b) 2 ( x - y ) ( x + y ) + \(\left(x+y\right)^2+\left(x-y\right)^2\)
c)\(\left(x-y+z\right)^2-\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)
Rút gọn biểu thức:
a) \(A=\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
b) \(B=3x^2\left(x+1\right)\left(x-1\right)-\left(x^2-1\right)\left(x^4+x^2+1\right)+\left(x^2-1\right)^3\)
c) \(C=\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\)
d) \(D=\left(x+1\right)^3+\left(x-1\right)^3+x^3-3x\left(x+1\right)\left(x-1\right)\)
Rút gọn biểu thức :
a) \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
b) P=\(\left(5x-1\right)+2\left(1-5x\right)\left(4+5x\right)+\left(5x+4\right)^2\)
c) Q=\(\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
d) P = \(12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
Rút gọn các biểu thức:
a, P=\(\left(5x-1\right)+2\left(1-5x\right)\left(4+5x\right)+\left(5x+4\right)^2\)
b, Q=\(\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
Cho biểu thức A=\(\dfrac{x^2}{\left(x+y\right)\left(1-y\right)}-\dfrac{y^2}{\left(x+y\right)\left(1+x\right)}-\dfrac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\)
a) Rút gọn A
b) Tính các cặp gia trị nguyên (x.y)để A=-3
Cho biểu thức A=\(\dfrac{x^2}{\left(x+y\right)\left(1-y\right)}-\dfrac{y^2}{\left(x+y\right)\left(1+x\right)}-\dfrac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\)
a) Rút gọn A
b) Tính các cặp gia trị nguyên (x.y)để A=-3