Bài 3: Liên hệ giữa phép nhân và phép khai phương

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thanh

rút gọn

a)M=\(\dfrac{x^2-2x\sqrt{2}+2}{x^2-2}\) với \(x\ne\pm\sqrt{2}\)

b)N=\(\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+5}\) với \(x\ne-\sqrt{5}\)

nguyễn viết hoàng
16 tháng 8 2018 lúc 15:56

\(M=\dfrac{x^2-2x\sqrt{2}+2}{x^2-2}=\dfrac{\left(x-\sqrt{2}\right)^2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}\)

\(M=\dfrac{x-\sqrt{2}}{x+\sqrt{2}}\)

hi vọng bạn hiểu

nguyễn viết hoàng
16 tháng 8 2018 lúc 15:59

b, \(N=\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+5}\)

chú ý dưới mẫu nhé! khá hay đẫy, nếu ghép lại là thành dạng bình phương đấy, mời bạn xem nhé!

\(N=\dfrac{x+\sqrt{5}}{\left(x+\sqrt{5}\right)^2}=\dfrac{1}{x+\sqrt{5}}\)

thấy chưa, đơn giản quá phải k

EDOGAWA CONAN
16 tháng 8 2018 lúc 16:32

a , \(M=\dfrac{x^2-2x\sqrt{x}+2}{x^2-2}\)

\(M=\dfrac{\left(x-\sqrt{2}\right)^2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}\)

\(M=\dfrac{x-\sqrt{2}}{x+\sqrt{2}}\)


Các câu hỏi tương tự
Hoài An
Xem chi tiết
Hương Phùng
Xem chi tiết
Lê Chính
Xem chi tiết
Đỗ Linh Chi
Xem chi tiết
Hương Phùng
Xem chi tiết
Nguyễn Viết Duy
Xem chi tiết
Phúc Hoàng
Xem chi tiết
nguyễn công huy
Xem chi tiết
Nguyễn Sỹ Tài
Xem chi tiết