Nhận xét \(A>0\)
\(A^2=\frac{2\sqrt{5}+2\sqrt{5-4}}{\sqrt{5}+1}=\frac{2\sqrt{5}+2}{\sqrt{5}+1}=2\Rightarrow A=\sqrt{2}\)
Nhận xét \(A>0\)
\(A^2=\frac{2\sqrt{5}+2\sqrt{5-4}}{\sqrt{5}+1}=\frac{2\sqrt{5}+2}{\sqrt{5}+1}=2\Rightarrow A=\sqrt{2}\)
Rút gọn biểu thức: \(A=\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}-\dfrac{\sqrt{3-\sqrt{5}}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}\)
Rút gọn A = \(\frac{4}{3+\sqrt{5}+\sqrt{2+2\sqrt{5}}}\)
Rút gọn B = \(\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
rút gọn biểu thức sau:
a.\(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
b.\(A=\dfrac{\sqrt{a}}{\sqrt{a}-5}-\dfrac{10\sqrt{a}}{a-25}-\dfrac{5}{\sqrt{a}+5}\) với a\(\ge\)0; a\(\ne25\)
Rút gọn biểu thức sau :
a)\(\frac{2}{\sqrt{7}-5}-\frac{2}{\sqrt{7}+5}\)
b)\(\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)
c)\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right)\frac{1}{\sqrt{7}-\sqrt{5}}\)
d)\(\frac{3}{\sqrt{5}-2}+\frac{2}{\sqrt{5}+3}-\frac{1}{\sqrt{5}+4}\)
giúp mình với ạ
Rút gọn biểu thức:
\(a,\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
\(b,\frac{1+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{1-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
1/ Tính:
a) \(\frac{\sqrt{6+\sqrt{11}}-\sqrt{7-\sqrt{33}}}{\sqrt{6}+\sqrt{2}}\)
b) \(\frac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}+\frac{2}{4+\sqrt{15}}-\frac{5\sqrt{5}+3\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
2/ Rút Gọn: với a ≥ 0, a ≠ 1
B=\(\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\left(\frac{1+\sqrt{a}}{a-1}\right)^2\)
3/ Cho biểu thức: A = \(\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{3-3\sqrt{x}}{x-5\sqrt{x}+6}\)
a) Tìm điều kiện xác định của A
b) Rút gọn A
c) Tìm x để A < -1
2. rút gọn biểu thức
a. \(\left(\sqrt{2}+2\right)\sqrt{2}-2\sqrt{2}\)
b,\(\dfrac{1}{\sqrt{5}-1}-\dfrac{1}{\sqrt{5}+1}\)
rút gọn biểu thức
\(\dfrac{5+2\sqrt{5}}{\sqrt{5}}-\dfrac{1}{\sqrt{5}-2}\)
Rút gọn: A=\(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)