Bài 1:So sánh Avà B biết rằng:
Afrac{10^{15}+1}{10^{16}+1}; Bfrac{10^{16}+1}{10^{17}+1}
Afrac{3}{8^3}+frac{7}{8^4}; Bfrac{7}{8^3}+frac{3}{8^4}
Afrac{1}{11}+frac{1}{12}+frac{1}{13}+.......+frac{1}{19}+frac{1}{20}; Bfrac{1}{2}
Bài 2:Dạng tính tổng đặc biệt:
Afrac{1}{1cdot2}+frac{1}{2cdot3}+frac{1}{3cdot4}+.....+frac{1}{99cdot100}
Bfrac{2}{1cdot3}+frac{2}{3cdot5}+frac{2}{5cdot7}+.....+frac{2}{99cdot101}
Cfrac{3^2}{10}+frac{3^2}{40}+frac{3^2}{88}+......+frac{3^2}{340}
Dfrac{1}{...
Đọc tiếp
Bài 1:So sánh Avà B biết rằng:
A=\(\frac{10^{15}+1}{10^{16}+1};\) B=\(\frac{10^{16}+1}{10^{17}+1}\)
A=\(\frac{3}{8^3}+\frac{7}{8^4}\); B=\(\frac{7}{8^3}+\frac{3}{8^4}\)
A=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+.......+\frac{1}{19}+\frac{1}{20};\) B=\(\frac{1}{2}\)
Bài 2:Dạng tính tổng đặc biệt:
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{99\cdot100}\)
\(B=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+.....+\frac{2}{99\cdot101}\)
\(C=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+......+\frac{3^2}{340}\)
\(D=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+......+\frac{1}{3^8}\)
\(E=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{99}\right)\)
Bài 3:Dạng chứng minh:
\(A=1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{99}.\)Chứng minh rằng A chia hết cho 100
A=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\).Chứng minh rằng A>\(\frac{4}{3}\)