ta có \(\frac{1}{1.1}+\frac{1}{2.2}+.....+\frac{1}{99.99}< 1+\frac{1}{2.3}+....+\frac{1}{98.99}=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}......+\frac{1}{98}-\frac{1}{99}=1-\frac{1}{99}\)
=\(\frac{99}{100}< 1< \frac{5}{4}\)
ta có \(\frac{1}{1.1}+\frac{1}{2.2}+.....+\frac{1}{99.99}< 1+\frac{1}{2.3}+....+\frac{1}{98.99}=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}......+\frac{1}{98}-\frac{1}{99}=1-\frac{1}{99}\)
=\(\frac{99}{100}< 1< \frac{5}{4}\)
1.chứng minh rằng A<\(\frac{1}{16}\) biết A=\(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+.....+\frac{99}{5^{100}}\)
2.tính (M-N)\(^3\) biết:
M=1-\(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)
N=\(\frac{1}{1010}+\frac{1}{1011}+.....+\frac{1}{2019}\)
chứng minh rằng A<\(\frac{1}{16}\) với A =\(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}\)
Chứng Minh Rằng
a) \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+.....+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Bài 1: Chứng minh rằng: \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Bài 2: Cho \(n\in N;n>1\). Chứng minh rằng: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{\left(n-1\right)^2}+\frac{1}{n^2}\notin N\)
Bài 1:So sánh Avà B biết rằng:
A=\(\frac{10^{15}+1}{10^{16}+1};\) B=\(\frac{10^{16}+1}{10^{17}+1}\)
A=\(\frac{3}{8^3}+\frac{7}{8^4}\); B=\(\frac{7}{8^3}+\frac{3}{8^4}\)
A=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+.......+\frac{1}{19}+\frac{1}{20};\) B=\(\frac{1}{2}\)
Bài 2:Dạng tính tổng đặc biệt:
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{99\cdot100}\)
\(B=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+.....+\frac{2}{99\cdot101}\)
\(C=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+......+\frac{3^2}{340}\)
\(D=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+......+\frac{1}{3^8}\)
\(E=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{99}\right)\)
Bài 3:Dạng chứng minh:
\(A=1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{99}.\)Chứng minh rằng A chia hết cho 100
A=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\).Chứng minh rằng A>\(\frac{4}{3}\)
\(\left(20+9\frac{1}{4}\right):2\frac{1}{4}\) \(\left(6-2\frac{4}{5}\right).3\frac{1}{8}-1\frac{3}{5}:\frac{1}{4}\)
\(\frac{32}{15}:\left(-1\frac{1}{5}+1\frac{1}{3}\right)\) \(0,2.\frac{15}{36}-\left(\frac{2}{5}=\frac{2}{3}\right):1\frac{1}{5}\)
\(\frac{-3}{7}.\frac{5}{9}+\frac{4}{9}.\frac{-3}{7}+2\frac{3}{7}\) \(0,7.2\frac{2}{3}.20.0,375.\frac{5}{8}\)
Chứng minh rằng: a)\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b)\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Nhanh lên nhé! Mk đang cần gấp.
\(\frac{10+\frac{9}{2}+\frac{8}{3}+\frac{7}{4}+ \frac{6}{5}+\frac{5}{6}+\frac{4}{7}+\frac{3}{8}+\frac{2}{9}+\frac{1}{10}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}+\frac{1}{11}}\)
1.Chứng minh: A < 1/16 với A = \(\frac{1}{5^2}\) + \(\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}\)
mk cần gấp, cảm ơn các bạn