Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
anh phan nguyen quynh

Rút gọn

a)\(\dfrac{\sqrt{2}}{\sqrt{\sqrt{2}+1}}-\dfrac{\sqrt{2}}{\sqrt{\sqrt{2}-1}}\)

b)\(\sqrt{4-2\sqrt{3}}+\sqrt{\dfrac{2}{2-\sqrt{3}}}-\sqrt{27}\)

c)\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{3}{\sqrt{x}+3}vớix\ge_{ }0,x\ne1\)

tran nguyen bao quan
25 tháng 11 2018 lúc 16:27

a) \(\dfrac{\sqrt{2}}{\sqrt{\sqrt{2}+1}}-\dfrac{\sqrt{2}}{\sqrt{\sqrt{2}-1}}=\dfrac{\sqrt{2}\left(\sqrt{\sqrt{2}-1}\right)}{\left(\sqrt{\sqrt{2}+1}\right)\left(\sqrt{\sqrt{2}-1}\right)}-\dfrac{\sqrt{2}\left(\sqrt{\sqrt{2}+1}\right)}{\left(\sqrt{\sqrt{2}+1}\right)\left(\sqrt{\sqrt{2}-1}\right)}=\dfrac{\sqrt{2}\left(\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}\right)}{\sqrt{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}}=\dfrac{\sqrt{2}\left(\left(\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}\right)\right)}{\sqrt{2-1}}=\sqrt{2}.\left(\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}\right)\)(1)

Đặt A=\(\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}\Leftrightarrow A^2=\sqrt{2}-1+\sqrt{2}+1-2\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=2\sqrt{2}-2\sqrt{1}=2\sqrt{2}-2\Leftrightarrow A=\pm\sqrt{2\sqrt{2}-2}\)

Ta có \(\sqrt{\sqrt{2}-1}< \sqrt{\sqrt{2}+1}\Leftrightarrow\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}< 0\Leftrightarrow A< 0\)

Vậy A=\(-\sqrt{2\sqrt{2}-2}\)

(1)\(=\sqrt{2}.\left(-\sqrt{2\sqrt{2}-2}\right)=-\sqrt{4\sqrt{2}-4}\)

b) \(\sqrt{4-2\sqrt{3}}+\sqrt{\dfrac{2}{2-\sqrt{3}}}-\sqrt{27}=\sqrt{3-2.\sqrt{3}.1+1}+\sqrt{\dfrac{2\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}-\sqrt{9.3}=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\dfrac{4+2\sqrt{3}}{2^2-\left(\sqrt{3}\right)^2}}-3\sqrt{3}=\left|\sqrt{3}-1\right|+\sqrt{4+2\sqrt{3}}-3\sqrt{3}=\sqrt{3}-1-3\sqrt{3}+\sqrt{3+2\sqrt{3}+1}=-2\sqrt{3}-1+\sqrt{\left(\sqrt{3}+1\right)^2}=-2\sqrt{3}-1+\sqrt{3}+1=-\sqrt{3}\)

c) \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{3}{\sqrt{x}+3}=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+7\sqrt{x}-6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-3x+5\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left(3x-5\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left(3x-3\sqrt{x}-2\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left[3\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)\right]}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left(\sqrt{x}-1\right)\left(3\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left(3\sqrt{x}-2\right)}{\sqrt{x}+3}=\dfrac{2-3\sqrt{x}}{\sqrt{x}+3}\)

anh phan nguyen quynh
24 tháng 10 2017 lúc 20:58

GIÚP MÌNH VỚI MÌNH ĐANG VỘI


Các câu hỏi tương tự
Quyên Teo
Xem chi tiết
lu nguyễn
Xem chi tiết
Quynh Existn
Xem chi tiết
Quynh Existn
Xem chi tiết
Ngọc Mai
Xem chi tiết
Quynh Existn
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Trần Thị Mỹ Trinh
Xem chi tiết
Lê Hương Giang
Xem chi tiết