\(A=\dfrac{2\left(\sqrt{2}+1\right)+\sqrt{3}\left(1+\sqrt{2}\right)}{5\sqrt{2}+1}=\dfrac{\left(\sqrt{2}+1\right)\left(2+\sqrt{3}\right)}{5\sqrt{2}+1}=\dfrac{\left(2+\sqrt{3}\right)\left(9+4\sqrt{2}\right)}{49}\)
\(A=\dfrac{2\left(\sqrt{2}+1\right)+\sqrt{3}\left(1+\sqrt{2}\right)}{5\sqrt{2}+1}=\dfrac{\left(\sqrt{2}+1\right)\left(2+\sqrt{3}\right)}{5\sqrt{2}+1}=\dfrac{\left(2+\sqrt{3}\right)\left(9+4\sqrt{2}\right)}{49}\)
Rút gọn:
a) \(2\sqrt{98}-3\sqrt{18}+\dfrac{1}{2}\sqrt{32}\)
b)\(\left(5\sqrt{2}+2\sqrt{5}\right).\sqrt{5}-\sqrt{250}\)
c)\(\left(2\sqrt{3}-5\sqrt{2}\right).\sqrt{3}-\sqrt{36}\)
d)\(3\sqrt{48}+2\sqrt{27}-\dfrac{1}{3}\sqrt{243}\)
e) \(6\sqrt{\dfrac{1}{3}}+\dfrac{9}{\sqrt{3}}-\dfrac{2}{\sqrt{3}-1}\)
f)\(4\sqrt{\dfrac{1}{2}}-\dfrac{6}{\sqrt{2}}\dfrac{2}{\sqrt{2}+1}\)
rút gọn biểu thức
\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)
Rút gọn:
1) \(\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}-2\sqrt{3}\)
\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
2) \(\sqrt{3-2\sqrt{2}}+\dfrac{1}{\sqrt{2}-1}\)
\(M=\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{\sqrt{a}}{\sqrt{a}+2}\right).\dfrac{a-4}{\sqrt{4a}}\)
\(N=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}+\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{x+\sqrt{x}-6}\right)\)
\(Q=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}+\dfrac{\sqrt{x}+3}{2-\sqrt{x}}\right)\)
Làm chi tiết giúp mình với vì mình yếu phần này lắm
\(\dfrac{6-\sqrt{6}}{\sqrt{6}-1}+\dfrac{6-\sqrt{6}}{\sqrt{6}}\)
\(\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{3}{\sqrt{18}+2\sqrt{3}}\)
\(\left(\dfrac{15}{3-\sqrt{3}}-\dfrac{2}{1-\sqrt{3}}+\dfrac{3}{\sqrt{3}-2}\right):\sqrt{28+10\sqrt{3}}\)
Rút gọn các biểu thức sau
a,\(A=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
b,\(B=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{3\sqrt{x}-1}{x-\sqrt{x}+1}-\dfrac{2x\sqrt{x}-2x+2\sqrt{x}-3}{x\sqrt{x}+1}\)
c,\(C=\left(1-\dfrac{x+3\sqrt{x}}{x-9}\right):\left(\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{3+\sqrt{x}}-\dfrac{9-x}{x+\sqrt{x}-6}\right)\)
d,\(D=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)
e,\(E=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
rút gọn biểu thức
\(\dfrac{\sqrt{2}}{\sqrt{5+1}}-\sqrt{\dfrac{2}{3-\sqrt{5}}}\)
Rút gọn biểu thức
\(\dfrac{1}{3-\sqrt{8}}-\dfrac{1}{\sqrt{8}-\sqrt{7}}+\dfrac{1}{\sqrt{7}-\sqrt{6}}-\dfrac{1}{\sqrt{6}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-2}\)
( \(\dfrac{3\sqrt{x}+6}{x-4}\) + \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\) ) : \(\dfrac{x-9}{\sqrt{x}-3}\)
rút gọn biểu thức
Tính:
E=(\(\sqrt{18}-3\sqrt{6}+\sqrt{2}\)) \(\sqrt{2}+6\sqrt{3}\)
G=\(\left(2\sqrt{2}-\sqrt{5}+\sqrt{18}\right)\).\(\left(\sqrt{50}+\sqrt{5}\right)\)
H=\(\dfrac{2+\sqrt{2}}{\sqrt{2}+1}\).\(\dfrac{2-\sqrt{2}}{\sqrt{2}-1}\)