Lời giải:
\(4x+\sqrt{(x-12)^2}=4x+|x-12|\)
\(=4x+(x-12)\) (do \(x\geq 12\) )
\(=5x-12\)
Lời giải:
\(4x+\sqrt{(x-12)^2}=4x+|x-12|\)
\(=4x+(x-12)\) (do \(x\geq 12\) )
\(=5x-12\)
Rút gọn các biểu thức sau:a. \(\frac{x+6\sqrt{x}+9}{x-9}\left(x\ge0;x\ne9\right)\)
b. \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
c. 4x - \(4x-\sqrt{x^2-4x+4}\left(x\ge2\right)\)
1) Rút gọn biểu thức
P=\(\left(\dfrac{2\sqrt{x}+x+1}{\sqrt{x}+1}\right).\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right):\left(1-\sqrt{x}\right)\)
A=\(1-\left(\dfrac{2}{1+2\sqrt{x}}-\dfrac{5\sqrt{x}}{4x-1}-\dfrac{1}{1-2\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{4x+4\sqrt{x}+1}\)
Rút gọn biểu thức trên
Rút gọn biểu thức :
\(B=\dfrac{\sqrt{1+\sqrt{1-x^2}}\left[\left(1+x\right)\sqrt{1+x}-\left(1-x\right)\sqrt{1-x}\right]}{x\left(2+\sqrt{1-x^2}\right)}\)
Giúp mình với các cao nhân
Rút gọn các biểu thức sau:
a) \(\left(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}+1\right)\left(\sqrt{3}-1\right)\)
b) \(\left(\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{2}{\sqrt{x+1}}\right)\) với x>0
\(\left[\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right].\dfrac{\left(1-x\right)^2}{2}\)
rút gọn
1) Rút gọn biểu thứ
A=\(\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a) Rút gọn A
b) Chứng minh A<1
2. rút gọn biểu thức
P=\(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
1) Rút gọn biểu thức
P=\(\left(\dfrac{x}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}+1}-\dfrac{2}{1-x}\right):\left(\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\right)\)